Latest Resources

IMAGES

VIDEOS

LATEST PUBLICATIONS

  • A channel selection method for hyperspectral atmospheric infrared sounders based on layering
    This study introduces an effective channel selection method for hyperspectral infrared sounders. The method is illustrated for the Atmospheric InfraRed Sounder (AIRS) instrument. The results are as follows. (1) Using the improved channel selection (ICS), the atmospheric retrievable index is more stable, with the value reaching 0.54. The coverage of the weighting functions is more evenly distributed over height with this method. (2) Statistical inversion comparison experiments show that the accuracy of the retrieval temperature, using the improved channel selection method in this paper, is consistent with that of 1D-Var channel selection. In the stratosphere and mesosphere especially, from 10 to 0.02 hPa, the accuracy of the retrieval temperature of our improved channel selection method is improved by about 1 K. The accuracy of the retrieval temperature of ICS is also improved at lower heights. (3) Statistical inversion comparison experiments for four different regions illustrate latitudinal and seasonal variations and better performance of ICS compared to the numerical weather prediction (NWP) channel selection (NCS) and primary channel selection (PCS) methods. The ICS method shows potential for future applications. more
  • Temperature and water vapour measurements in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC)
    The BASIL Raman lidar system entered the International Network for the Detection of Atmospheric Composition Change (NDACC) in 2012. Since then, measurements have been carried out routinely on a weekly basis. This paper reports specific measurement results from this effort, with a dedicated focus on temperature and water vapour profile measurements. The main objective of this research effort is to provide a characterisation of the system performance. The results illustrated in this publication demonstrate the ability of BASIL to perform measurements of the temperature profile up to 50 km and of the water vapour mixing ratio profile up to 15 km, when considering an integration time of 2 h and a vertical resolution of 150–600 m; the mean measurement accuracy, determined based on comparisons with simultaneous and co-located radiosondes, is 0.1 K (for the temperature profile) and 0.1 g kg−1 (for the water vapour mixing ratio profile) up to the upper troposphere. The relative humidity profiling capability up to the tropopause is also demonstrated by combining simultaneous temperature and water vapour profile measurements. Raman lidar measurements are compared with measurements from additional instruments, such as radiosondes and satellite sensors (IASI and AIRS), as well as with model reanalyses data (ECMWF and ECMWF-ERA). We focused our attention on six case studies collected during the first 2 years of system operation (November 2013–October 2015). Comparisons between BASIL and the different sensor/model data in terms of the water vapour mixing ratio indicate biases in the altitudinal interval between 2 and 15 km that are always within ±1 g kg−1 (or ±50 %), with minimum values being observed in the comparison between BASIL and radiosonde measurements (±20 % up to 15 km). Results also indicate a vertically averaged mean mutual bias of −0.026 g kg−1 (or −3.8 %), 0.263 g kg−1 (or 30.0 %), 0.361 g kg−1 (or 23.5 %), −0.297 g kg−1 (or −25 %) and −0.296 g kg−1 (or −29.6 %) when comparing BASIL with radiosondes, IASI, AIRS, ECMWF and ECMWF-ERA respectively. The vertically averaged mean absolute mutual biases are somewhat higher, i.e. 0.05 g kg−1(or 16.7 %), 0.39 g kg−1 (or 23.0 %), 0.57 g kg−1 (or 23.5 %), 0.32 g kg−1 (or 29.6 %) and 0.52 g kg−1 (or 53.3 %), when comparing BASIL with radiosondes, IASI, AIRS, ECMWF and ECMWF-ERA respectively. The comparisons in terms of temperature measurements indicate mutual biases in the altitudinal interval between 3 and 30 km that are always within ±3 K, with minimum values being observed in the comparison between BASIL and radiosonde measurements (±2 K within this same altitudinal interval). Results also reveal mutual biases within ±3 K up to 50 km for most sensor/model pairs. Furthermore, a vertically averaged mean mutual bias of −0.03, 0.21, 1.95, 0.14 and 0.43 K is found between BASIL and the radiosondes, IASI, AIRS, ECMWF and ECMWF-ERA respectively. The vertically averaged absolute mean mutual biases between BASIL and the radiosondes, IASI, AIRS, ECMWF and ECMWF-ERA are 1.28, 1.30, 3.50, 1.76 and 1.63 K respectively. Based on the available dataset and benefiting from the fact that the BASIL Raman lidar could be compared with all other sensor/model data, it was possible to estimate the overall bias of all sensors/datasets: −0.04 g kg−1 ∕ 0.19 K, 0.20 g kg−1 ∕ 0.22 K, −0.31 g kg−1 ∕ −0.02 K, −0.40 g kg−1 ∕ −1.76 K, 0.25 g kg−1 ∕ 0.04 K and 0.25 g kg−1 ∕ −0.24 K for the water vapour mixing ratio/temperature profile measurements carried out by BASIL, the radiosondes, IASI, AIRS, ECMWF and ECMWF-ERA respectively. more
  • Evaporation From the Southern Ocean Estimated on the Basis of AIRS Satellite Data
    Evaporation plays an important role in the global water and energy cycles and, hence, in climate change. Evaporation over the Southern Ocean, where the Antarctic sea ice coverage has a large annual cycle, is poorly quantified. In this study, daily evaporation is estimated for the Southern Ocean with a sea‐ice‐specific algorithm, using surface temperature and air humidity from National Aeronautics and Space Administration's Atmospheric Infrared Sounder (AIRS), and wind speeds from Modern‐Era Retrospective Analysis for Research and Applications, Version 2 (MERRA‐2), reanalysis during 2003–2016. An uncertainty of 34% was found in the evaporation product. The results indicate that annual evaporation has considerable interannual and regional variability, but with a decreasing trend during the study period over most of the Southern Ocean. There are, however, areas where evaporation has increased, specifically in the Ross Sea in winter and summer, with smaller positive trends in spring and fall. Overall, the changes in the difference between the surface specific humidity and the air specific humidity, and to a much lesser extent in the wind speed, are the main drivers for the changes in evaporation throughout the year. During spring and fall months, changes to the sea ice cover, which alter the surface specific humidity, are the main drivers for the change, but in summer and winter the main driver is the air‐specific humidity. Air masses originating from the Antarctic continent (south) are associated with cold and dry conditions, which increase evaporation, whereas air masses from lower latitudes in the Southern Ocean (north) are associated with warm and moist conditions, decreasing evaporation. Comparisons with other reanalysis evaporation products produce similar trends, although annual averages differ. more
  • Trend analysis of atmospheric temperature, water vapour, ozone, methane and carbon-monoxide over few major cities of India using satellite data
    In this study, decadal trend analysis of atmospheric temperature, water vapour, ozone, methane and carbon-monoxide has been presented over few major cities of India using Aqua-AIRS products from 2003 to 2012. The atmospheric column is studied in few atmospheric layers, viz., surface-850, 850–500, 500–100, 100–50 and 50–1 hPa for temperature, water vapour and ozone. However, CH4 and CO results are presented in total column amounts. Non-parametric Mann–Kendall test has been applied to investigate the trends of annual means of parameters and Sen’s slope estimate has been used to find the rate of the change, if there is a trend. The layer average temperature (LAT) has been found to be increasing in lower troposphere (surface-850 hPa) and decreasing in lower stratosphere (100–50 hPa). The warming trend over Chennai is found to be not limited in lower tropospheric region, but extended in 850–500 hPa layer also. However, LAT (850–500 hPa) has decreasing trend over Thiruvananthapuram. LAT in 500–100 hPa has significant decreasing trend only over Ahmedabad. The decreasing LAT trend in 100–50 hPa is quite prominent with significant decreasing trends over Mumbai, Ahmedabad, Kolkata and Hyderabad. The layer integrated water vapour (LIWV) is found be increasing mainly in surface-850 hPa and 850–500 hPa layers. The decreasing trend of LIWV has been observed only over Ahmedabad in 500–100 hPa layer. For total column water vapour, the trends are mostly increasing, however, it is statistically significant only over Hyderabad. The layer integrated ozone has been found to be increasing in troposphere and decreasing in lower stratosphere. The increasing trend of ozone in troposphere is most prominent in lower-mid tropospheric region (850–500 hPa layer). No significant trend has been observed for total column ozone. Total column methane has shown significant increasing trend over all cities with very good significance level. However, for total column carbon-monoxide, the trends are decreasing and the decreasing trends are significant over Delhi and Mumbai. more