Latest Resources




  • Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements
    This article describes a global consistency check of CO2 satellite retrieval products from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) using statistical analysis and data from the World Data Centre for Greenhouse Gases (WDCGG). We use the correlation coefficient (r), relative difference (RD), root mean square errors (RMSE), and mean bias error (MBE) as evaluation indicators for this study. Statistical results show that a linear positive correlation between AIRS/IASI and WDCGG data occurs for most regions around the world. Temporal and spatial variations of these statistical quantities reflect obvious differences between satellite-derived and ground-based data based on geographic position, especially for stations near areas of intense human activities in the Northern Hemisphere. It is noteworthy that there appears to be a very weak correlation between AIRS/IASI data and ten groundbased observation stations in Europe, Asia, and North America. These results indicate that retrieval products from the two satellite-based instruments studied should be used with great caution. more
  • AIRS-observed warm core structures of tropical cyclones over the western North Pacific
    Atmospheric Infrared Sounder (AIRS) temperature profiles during the period 2003–2013 are used to examine the warm core structures and evolution characteristics associated with the formation and development of western North Pacific (WNP) tropical cyclones (TCs). The warm core with a steady 1.5-K warming in the layer of 500–300 hPa occurs 24 h prior to tropical storm formation. Apparent eye warming extends upward to upper troposphere and downward to near surface after tropical storm formation. TC intensity shows a robust positive correlation with the warm core strength and has a weaker but still significant positive correlation with the warm core height (the weaker correlation is primarily attributed to the scattered warm core heights of weak TCs). Future 24-h intensity change of TCs has little correlation with the warm core height while it has a significant negative correlation with the warm core strength. Weak to moderate warm core at 500–200 hPa may be a necessary but not sufficient initial condition for TC rapid intensification. AIRS-observed warm core structures, in combination with other environmental factors, have the potential to improve the prediction of tropical storm formation and rapid intensification of WNP TCs. more
  • Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements
    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy. more
  • Clouds, warm air, and a climate cooling signal over the summer Arctic
    While the atmospheric greenhouse effect always results in a warming at the surface, outgoing longwave radiation (OLR) to space always represents a cooling. During events of heat and moisture advection into the Arctic, increases in tropospheric temperature and moisture impact clouds, in turn impacting longwave (LW) radiation. State-of-the-art satellite measurements and atmospheric reanalysis consistently reveal an enhancement of summer Arctic monthly OLR cooling ranging 1.5–4 W m−2 during months with anomalously high thermodynamic advection. This cooling anomaly is found to be of the same magnitude or slightly larger than associated downwelling LW surface warming anomalies. We identify a relationship between large-scale circulation variability and changing cloud properties permitting LW radiation at both the surface and top of the atmosphere to respond to variability in atmospheric thermodynamics. Driven by anomalous advection of warm air, the corresponding enhanced OLR cooling signal on monthly time scales represents an important buffer to regional Arctic warming. more