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Introduction: Stratospheric Winds and Climate Change

Greenhouse Gas Increases > Tropospheric Warming and Stratospheric Cooling
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Shepherd and McLandress [2011]:

showed how anticipated future zonal wind changes lead to
higher critical levels for synoptic scale waves (right) =2
and stronger stratospheric wave drag at higher altitudes.
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Introduction: Stratospheric Winds and Climate Change

Small changes in zonal-mean winds affect Rossby wave and gravity wave
propagation, with wide ranging impacts on climate and weather processes.

Example: GHG increases and small changes in the upper-level winds lead to an
increasing trend in the strength of the global equator-to-pole stratospheric
transport circulation in most chemistry-climate models:
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GWD Indirect Effects: interactions between surface drag and waves

Richter et al. [2010]: Interactions between surface drag, gravity waves, planetary waves
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Occurrence Frequencies of Sudden Warmings
are much higher with surface TMS: . With TMS
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Common Model Biases

Wind biases in the Southern Hemisphere are common.
Butchart et al. [2011]
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Common Model Biases

Seasonal transition of the winds occurs too late in the Southern Hemisphere
Butchart et al. [2011]
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Gravity Wave Drag can reduce common model biases

Improving Southern Hemisphere vortex biases and effects on ozone loss
Alexander et al. [2010]
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Gravity Wave Drag can reduce common biases

Improving Southern Hemisphere vortex biases and effects on ozone loss

McLandress et al. [2012]: CMAM wind biases in the stratosphere compared
To Data Assimilation System. Attributed to missing Gravity Wave Drag.
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Gravity Wave Drag can reduce common biases

Improving Southern Hemisphere vortex biases and effects on ozone loss

McLandress et al. [2012]: G VI '
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Remote islands provide some missing drag

Alexander et al [2009]:
Orographic gravity waves above
South Georgia Island in AIRS
measurements.

IR channel w/peak at 3hPa~40km

Fourier-ray model comparison
confirmed vertically propagating
gravity waves with substantial
momentum flux and inferred

drag.
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New Study: 14 Islands Examined

- Latitudes 37-61°S Trg;ig:a Cunhia -~
- Peak altitudes 400-3000m "

- Survey of the data found Bouvet PEI |

no wave events for Gough, ) SO0 St Sandwich . Grozet
Macquarie, Amsterdam, Sth Orkneys |
Bouvet. Auckland often 5 o Kerguelen',

obscured by NZ. S e A Hoarg Amsterdain

Name: Peak Altitude Latitude Longitude

MacQuarie 410m 54.5°S 159°E

Auckland 705m 50.7°S 166°E

Amsterdam 867m 37.8° 77.5°E

Gough 910m 40.3°S 9.9°W

Bouvet 935m 54.4°S 3.4°E .
Crozet 1090m 46.4°S 51°F .Macquarie
Prince Edward 1242m 46.9°S 37.7°E § ~, Auckland
South Orkney 1266m 60.6°S  45.5°W | : ;

South Sandwich 1370m 58.4°S 26.4°W

Tasmania 1617m 42°S 146°E

Kerguelen 1850m 49.3°S 69.6°E

Tristan da Cunha 2062m 37.1°S 12.3°W

Heard 2745m 53.1°S 72.5°E

South Georgia 2934m 54.2°S  36.8°W
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Method: Wave event identification
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AIRS Sampling

- Typically 2-3 measurement swaths
daily above each island.

- Winter season has westerly
stratospheric winds favorable for
vertical propagation of mountain
waves.

- AIRS kernel function depth means

only long vertical wavelength
waves > 12 km are visible.

Vertical Wavelength (km)
Altitude (km)

0.4 0.6 0.8
Response




Results: July Occurrence Frequencies

Wave occurrence varies with latitude and in rough proportion to wind
at the observation level.

=>» First order control: stratospheric wind on wave visibility in AIRS.
This further suggests wave events may be far more common than observed.

July Means: Islands ordered by °S Latitude

3hPa Zonal
Wind (m/s)

Occurrence
Frequency (%)

900hPa
Wind (m/s)

|
Tristan  Tasmania Heard  S.Georgia S.Orkney




Results: Seasonal and interannual variations
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Results: Seasonal and interannual variations
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Details reveal no waves observed during a 6-day period of easterly surface

winds, when orographic waves were effectively shut off.

=» Additional effects of surface conditions on wave generation.




Significance to General Circulation

Event-mean momentum fluxes estimated directly from AIRS data with
wavelet method [Alexander et al, 2009]: All events May-Sep 2003-4
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Significance to General Circulation

Event-mean momentum fluxes estimated directly from AIRS data with
wavelet method [Alexander et al, 2009]: All events May-Sep 2003-4
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Momentum Flux: Seasonal Variation

Monthly-mean May thru September momentum fluxes for 4 islands.

- Note wave fluxes
typically decay with z.

- Might max monthly
mean momentum fluxes
(~100mPa) and
occurrence frequencies
(~75%) be common at
lower altitudes?

- Use this scenario to
evaluate a potential
impact of island
orographic waves on
the stratospheric
circulation...
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Potential Impact on General Circulation

Assumptions:
Occurrence frequencies in the lower stratosphere = 75%
Event momentum flux for larger Islands with topography > 1500 m = 100 mPa
per 5°x4° area
Event momentum flux for small Islands with topography >2000m= 50 mPa per
3°x2° area
Event momentum flux for small Islands 1000-1500 m = 30 mPa per 3°x2° area

Name: Peak Altitude Latitude

Crozet

Prince Edward
South Orkney
South Sandwich
Tasmania
Kerguelen
Tristan da Cunha
Heard

South Georgia

1090m
1242m
1266m
1370m
1617m
1850m
2062m
2745m
2934m

46.4°S
46.9°S
60.6°S
58.4°S
42°S
49.3°S
37.1°5
53.1°S
54.2°S




Potential Impact on General Circulation

Assumptions:
Occurrence frequencies in the lower stratosphere = 75%
Event momentum flux for larger Islands with topography > 1500 m = 100 mPa
per 5°x4° area
Event momentum flux for small Islands with topography >2000m= 50 mPa per
3°x2° area
Event momentum flux for small Islands 1000-1500 m = 30 mPa per 3°x2° area

Name:

Crozet

Prince Edward
South Orkney
South Sandwich
Tasmania
Kerguelen
Tristan da Cunha
Heard

South Georgia

Peak Altitude

1090m
1242m
1266m
1370m
1617m
1850m
2062m
2745m
2934m

Latitude

46.4°S
46.9°S
60.6°S
58.4°S
42°S
49.3°S
37.1°5
53.1°S
54.2°S

Contribution to

zonal mean flux:

0.2 mPa
0.2 mPa
0.2 mPa
0.2 mPa
1 mPa
1 mPa
0.3 mPa
0.3 mPa
1 mPa




Potential Impact on General Circulation

Assumptions:
Occurrence frequencies in the lower stratosphere = 75%
Event momentum flux for larger Islands with topography > 1500 m = 100 mPa
per 5°x4° area
Event momentum flux for small Islands with topography >2000m= 50 mPa per
3°x2° area
Event momentum flux for small Islands 1000-1500 m = 30 mPa per 3°x2° area

Name: Peak Altitude Latitude Contribution to
zonal mean flux:

Crozet 1090m 46.4°S 0.2 mPa

Prince Edward 1242m 46.9°S 0.2 mPa =» Substantial
South Orkney 1266m 60.6°S 0.2 mPa zonal-mean
South Sandwich 1370m 58.4°S 0.2 mPa contributions
Tasmania 1617m 42°S 1 mPa from these
Kerguelen 1850m 49.3°S 1 mPa island wave
Tristan da Cunha 2062m 37.1°S 0.3 mPa events.
Heard 2745m 53.1°S 0.3 mPa

South Georgia 2934m 54.2°S I mPa

McLandress et al [2012] study estimated 10 mPa zonal mean flux
needed to alleviate their climate model wind bias.




Summary & Conclusions

Orographic waves above small SH islands occur
commonly in the fall-thru-spring stratosphere.

Occurrence frequencies in AIRS are primarily
limited by stratospheric winds.

Momentum fluxes can be large, and mean values
>100 mPPa (10x zonal mean at other latitudes).

Small area of island wave events will limit their
impact on SH circulation, but collectively they may
fill a fraction of the “gap” in SH drag.
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Reference in JGR: Alexander, M.J. and A.W. Grimsdell, 2013: Seasonal cycle
of orographic gravity wave occurrence above small islands in the Southern

Hemisphere: Implications for effects on the general circulation. J. Geophys.
Res., 118, 11,589-11,599 d0i:10.1002/2013JD020526.




