Recent Validation Results for the Neural Network V6 First Guess

Adam B. Milstein, William J. Blackwell, Christy F. Cull

AIRS Science Team Meeting

November 16, 2012

Disclaimer: This work is sponsored by the National Oceanic and Atmospheric Administration under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations, and conclusions are those of the author and are not necessarily endorsed by the United States Government
Outline

- SCC/NN Overview
- Validation using ECMWF
 - Golden Days
 - Selected days from 2010
- Validation using Radiosonde
 - Processing
 - Results for 2003, 2004, and 2010
- Conclusion
Overview

- Stochastic Cloud Clearing / Neural Network (SCC/NN) algorithm provides initialization for V6 of the AIRS L2 physical retrieval

- This briefing presents comprehensive validation results over multiple years and datasets

- Results will be prepared for future publication
Stochastic Cloud Clearing / Neural Network (SCC/NN)

- SCC/NN algorithm is a statistical method for retrieval of temperature and water vapor profiles using AIRS and AMSU
 - SCC: Estimates cloud-cleared infrared spectrum using series of linear and nonlinear operations on AIRS/AMSU radiances
 - NN: Estimates temperature and water vapor profile from projected principle components of the cloud-cleared spectrum
SCC/NN Training

- SCC training targets are clear-air radiances generated by SARTA based on ECMWF profiles
- NN training targets are ECMWF temperature and water vapor profiles
- Training data drawn from every 4th day between December 2004 and January 2006
- SCC/NN data divided into ~200 stratifications (based on 5 variables), each with a comprehensive training set
 - Ascending/descending, land/ocean, latitude, surface pressure, and season
 - Each stratification: ~30,000 training profiles, ~5,000 validation profiles, ~5,000 testing profiles
Outline

• SCC/NN Overview

• Validation using ECMWF
 – Golden Days
 – Selected days from 2010

• Validation using Radiosonde
 – Processing
 – Results for 2003, 2004, and 2010

• Conclusion
Golden Days RMS Plots: Global RMS vs. ECMWF

- RMS difference vs. ECMWF for 8 Golden Days, including 2,592,000 “golf ball” retrievals
- Golden Days: 9/6/02, 1/25/03, 6/8/03, 8/21/03, 9/3/03, 10/12/03, 12/5/03, 9/29/04
- SCC/NN shows overall improvement in RMS vs. ECMWF and robustness to cloudy scenes
Example Results: Surface Temperature Minus ECMWF, Ascending

SCC/NN minus ECMWF

- 06-Sep-2002
- 08-Jun-2003
- 03-Sep-2003
- 05-Dec-2003

- 25-Jan-2003
- 21-Aug-2003
- 12-Oct-2003
- 29-Sep-2004

AIRSv5 minus ECMWF

- 06-Sep-2002
- 08-Jun-2003
- 03-Sep-2003
- 05-Dec-2003

- 25-Jan-2003
- 21-Aug-2003
- 12-Oct-2003
- 29-Sep-2004

Surface Temperature: SCC/NN minus ECMWF (K)

Surface Temperature: AIRSv5 minus ECMWF (K)
Example Results: Temperature at 500 mb Minus ECMWF, Ascending

SCC/NN minus ECMWF
06-Sep-2002 25-Jan-2003
08-Jun-2003 21-Aug-2003
03-Sep-2003 12-Oct-2003
05-Dec-2003 29-Sep-2004

AIRSv5 minus ECMWF
06-Sep-2002 25-Jan-2003
08-Jun-2003 21-Aug-2003
03-Sep-2003 12-Oct-2003
05-Dec-2003 29-Sep-2004

Temperature at 500 mb: SCC/NN minus ECMWF (K)

Temperature at 500 mb: AIRSv5 minus ECMWF (K)
Example Results: Temperature at 850 mb Minus ECMWF, Ascending

SCC/NN minus ECMWF

AIRSv5 minus ECMWF

06-Sep-2002 to 25-Jan-2003

08-Jun-2003 to 21-Aug-2003

03-Sep-2003 to 12-Oct-2003

05-Dec-2003 to 29-Sep-2004

06-Sep-2002 to 25-Jan-2003

08-Jun-2003 to 21-Aug-2003

03-Sep-2003 to 12-Oct-2003

05-Dec-2003 to 29-Sep-2004

Temperature at 850 mb: SCC/NN minus ECMWF (K)

Temperature at 850 mb: AIRSv5 minus ECMWF (K)
Example Results: Water Vapor at 850 mb Minus ECMWF, Ascending

SCC/NN minus ECMWF

06-Sep-2002
08-Jun-2003
03-Sep-2003
05-Dec-2003
25-Jan-2003
21-Aug-2003
12-Oct-2003
29-Sep-2004

AIRSv5 minus ECMWF

06-Sep-2002
08-Jun-2003
03-Sep-2003
05-Dec-2003
25-Jan-2003
21-Aug-2003
12-Oct-2003
29-Sep-2004

Water Vapor at 850 mb: SCC/NN minus ECMWF (g/kg)

Water Vapor at 850 mb: AIRSv5 minus ECMWF (g/kg)
Golden Days: Effect of Excluding AMSU Channels 4, 5, 7 (Post-2007 Approach)

- AMSU channels 4, 5, and 7 not used after 2007 due to noise
 - Different NN used
- Some increase in temperature RMS vs. ECMWF seen near surface
2010: 11 Selected Days, RMS vs. ECMWF

- First day of every month in 2010 when available (11 days total)
- Initial plots with sparser global coverage than Golden Day analysis
 - Planning to update with denser coverage
- Results comparable to Golden Day RMS plots, but slightly greater
Outline

- SCC/NN Overview
- Validation using ECMWF
 - Golden Days
 - Selected days from 2010
- Validation using Radiosonde
 - Processing
 - Results for 2003, 2004, and 2010
- Conclusion
Validation Using Radiosondes

- Extensive RAOB reports for 2003, 2004, and 2010 provided by Tony Reale and Frank Tilley
- We extract interpolated temperature and water vapor profiles from the reports and collocate them to year-round SCC/NN retrievals and ECMWF datasets
 - RAOBs collocated to SCC/NN within ±3 hr. time and 100km

<table>
<thead>
<tr>
<th>Year</th>
<th>Day</th>
<th>Night</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>64,568</td>
<td>104,745</td>
<td>168,196</td>
</tr>
<tr>
<td>2004</td>
<td>56,486</td>
<td>90,273</td>
<td>145,692</td>
</tr>
<tr>
<td>2010</td>
<td>32,388</td>
<td>59,744</td>
<td>91,836</td>
</tr>
<tr>
<td>Total</td>
<td>153,442</td>
<td>254,762</td>
<td>405,724</td>
</tr>
</tbody>
</table>
2003: SCC/NN RMS vs. Collocated RAOB and ECMWF

2003 SCCNN and AIRS vs RAOB Temp Error (RMS)

2003 SCCNN and AIRS vs RAOB WV Error

2003 SCCNN and AIRS vs ECMWF Temp Error (RMS)

2003 SCCNN and AIRS vs ECMWF WV Error

AIRS v5 (All)
SCCNN (All)
AIRSv5 (PBest)
SCCNN (PBest)
AIRSv5 (Not PBest)
SCCNN (Not PBest)
2004: SCC/NN RMS vs. Collocated RAOB and ECMWF

2004 SCCNN and AIRS vs RAOB Temp Error (RMS)

2004 SCCNN and AIRS vs RAOB WV Error

2004 SCCNN and AIRS vs ECMWF Temp Error (RMS)

2004 SCCNN and AIRS vs ECMWF WV Error

LINCOLN LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
2010: SCC/NN RMS vs. Collocated RAOB and ECMWF

2010 SCCNN and AIRS vs RAOB Temp Error (RMS)

2010 SCCNN and AIRS vs RAOB WV Error

2010 SCCNN and AIRS vs ECMWF Temp Error (RMS)

2010 SCCNN and AIRS vs ECMWF WV Error
Temperature RMS Comparison to RAOB in Lowest 1 km versus Cloud Fraction

- 2010 results show slight RMS increase compared with 2003
 - May be attributable in part to use of 12 AMSU channels post-2007
- Consistent with ECMWF comparison results over land
Outline

• SCC/NN Overview
• Validation using ECMWF
 – Golden Days
 – Selected days from 2003, 2004, 2010
• Validation using Radiosonde
 – Processing
 – Results for 2003, 2004, and 2010
• Conclusion
Conclusions

- SCC/NN has been comprehensively validated with multiple data sets

- Results demonstrate improved retrieval performance, robustness to increased cloud fraction, and consistency over time

- Areas of further improvement under investigation
 - Repeat of 2010 with improved geographic coverage planned