Inter-comparison and Assessment of AIRS Version-5 and Version-6 Temperature, Water Vapor, Surface Emissivity, and Cloud Products

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar

NASA GSFC Sounder Research Team (SRT)

AIRS Sounder Science Team Meeting
Greenbelt, MD

November 16, 2012
Comparisons of V6.07, V6.07 AO, and V5.0

Two types of evaluation

- 9 focus days, September 6, 2002 through September 14, 2012, validated against ECMWF truth
 Evaluated T_s^*, surface spectral emissivity ε_v^*, $T(p)^{**}$, $q(p)^{**}$
 Mean* and trends** of yields, RMS differences, and biases

- 12 monthly means for 4 different months in 3 different years
 Evaluated biases as well as trends of V6.07 T_{500}, q_{500}, W_{TOT}, $\alpha \varepsilon$, OLR and OLR$_{CLR}$ compared to V.5
Surface Skin Temperature Difference
9-Day Average Daytime and Nighttime combined
50 N to 50 S Non-Frozen Ocean

Temperature Difference

<table>
<thead>
<tr>
<th>Version</th>
<th>QC</th>
<th>Mean</th>
<th>STD</th>
<th>% Cases</th>
<th>Percent greater than</th>
<th>3 from mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version-6.07</td>
<td>0.1</td>
<td>-0.32</td>
<td>0.95</td>
<td>53.39</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>Version-6.07</td>
<td>0</td>
<td>-0.27</td>
<td>0.84</td>
<td>41.59</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Version-6.07</td>
<td>0.1</td>
<td>-0.34</td>
<td>0.95</td>
<td>50.18</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>Version-6.07</td>
<td>0</td>
<td>-0.30</td>
<td>0.87</td>
<td>41.54</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Version-5</td>
<td>0.1</td>
<td>-0.58</td>
<td>0.63</td>
<td>20.19</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>Version-5</td>
<td>0</td>
<td>-0.49</td>
<td>0.56</td>
<td>10.20</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar
Percent Accepted QC=0,1 SST vs. Cloud Fraction
50° North to 50° South 9-Day Average

AIRS RMS SST Temperature Difference from ECMWF
Vs. Effective Cloud Fraction 9-Day Average

Version-6 accepts many more cases than Version-5, especially at moderate to high cloud fraction
RMS errors of both Version-5 and Version-6 SST grow slowly with increasing cloud fraction
9-Day Surface Skin Temperature (K) Non-Frozen Ocean Retrieved minus ECMWF AM/PM Average

Version-6.07

Version-5

Version-6 Level-3 SST product has much better accuracy and spatial coverage than Version-5
Ocean Surface Emissivity vs. Zenith Angle

Mean 950 cm$^{-1}$ Emissivity minus Masudo
50 North to 50 South Ocean
9-Day

Mean 2400 cm$^{-1}$ Emissivity minus Masudo
50 North to 50 South Ocean
9-Day

STD 950 cm$^{-1}$ Emissivity
50 North to 50 South Ocean
9-Day

STD 2400 cm$^{-1}$ Emissivity
50 North to 50 South Ocean
9-Day

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar
Day/night differences of land surface emissivity are much smaller in Version-6 compared to Version-5
Version-6 T(p) retrievals with Data Assimilation QC have RMS errors ≤1K throughout troposphere
Version-6 T(p) retrievals with Climate QC have much greater yield than Version-5 with small biases
Differences between V6.07 and V6.07 AO are small
Version-6 errors are smaller than Version-5, and Version-6 yields are higher than Version-5, especially at larger cloud fractions.
Global Temperature 9-Day Two Common Ensembles

Percent of All Cases
Accepted

Layer Mean RMS (°K)
Differences from ECMWF
9-Day Mean Statistics Tropospheric Temperature Metric (TTM) and Boundary Layer Metric (BLM)

Cases in Common Using the Version-5 Tight Ensemble

<table>
<thead>
<tr>
<th></th>
<th>Global TTM</th>
<th>Land ±50° TTM</th>
<th>Ocean ±50° TTM</th>
<th>Poleward of 50°N TTM</th>
<th>Poleward of 50°S TTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version-5</td>
<td>1.14</td>
<td>1.22</td>
<td>1.06</td>
<td>1.18</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>1.54</td>
<td>1.78</td>
<td>1.21</td>
<td>1.74</td>
<td>2.01</td>
</tr>
<tr>
<td>Version-6.07</td>
<td>0.94</td>
<td>0.94</td>
<td>0.86</td>
<td>0.98</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>1.35</td>
<td>1.49</td>
<td>1.00</td>
<td>1.54</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Cases in Common Using the Version-6.07 Climate Ensemble

<table>
<thead>
<tr>
<th></th>
<th>Global TTM</th>
<th>Land ±50° TTM</th>
<th>Ocean ±50° TTM</th>
<th>Poleward of 50°N TTM</th>
<th>Poleward of 50°S TTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version-5</td>
<td>1.56</td>
<td>1.75</td>
<td>1.43</td>
<td>1.51</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>2.84</td>
<td>2.92</td>
<td>2.70</td>
<td>2.95</td>
<td>2.96</td>
</tr>
<tr>
<td>Version-6.07</td>
<td>1.11</td>
<td>1.05</td>
<td>1.02</td>
<td>1.11</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>1.69</td>
<td>1.72</td>
<td>1.35</td>
<td>1.92</td>
<td>2.09</td>
</tr>
</tbody>
</table>

TTM is the average T(p) RMS difference from ECMWF over all 1 km layers from surface to 100 mb
BLM is the average T(p) RMS difference from ECMWF over the lowest 6 0.25 km layers
All Version-6 metrics are much better than Version-5, especially for the difficult climate ensemble.
Global Temperature Trends 9-Day

Percent of All Cases Accepted

Layer Mean BIAS (°K) Differences from ECMWF

Version-5 had significant negative yield and tropospheric T(p) bias trends. These are significantly improved on in Version-6 and Version-6 AO.
Global Water Vapor 9-Day Statistics use their own QC

1 Km Layer Mean Precipitable Water

Percent Yield

RMS % Differences from ECMWF

BIAS % Differences from ECMWF

Version-6 has higher yield than Version-5 and performs better in the lower troposphere

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar
9-Day Surface Total Precipitable Water (cm)
Retrieved minus ECMWF AM/PM Average
Version-6.07 Version-5

Version-6 Level-3 total precipitable water is more accurate than Version-5
Global Water Vapor Trends (%/yr) 9-Day Statistics use their own Climate QC

1 Km Layer Mean

Percent Yield

Precipitable Water Bias vs. ECMWF

Negative yield and tropospheric water vapor trends are improved in Version-6 compared to Version-5

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar
Assessment of Differences in Version-6.07 and Version-5 Trends

Version-5 Level-3 products are known to have some spurious trends. We have compared global mean Level-3 Version-5 and Version-6.07 products to see how much Level-3 trends might improve in Version-6.

The following plots show monthly mean global mean time series of select Version-5 products and Version-6.07 products for the 12 months January, April, July, and October 2003, 2007, and 2011 which have been run.

We also show the “trendline” of Version-5 and Version-6.07 products defined as the linear least squares fit of the time series passing through the 12 months sampled by Version-6.

What is most important is the difference between Version-6 and Version-5 trendline slopes.

These results are shown for:
- T_{500}, q_{500}, W_{TOT}, $αε$, OLR, and OLR$_{CLR}$
Global Time Series January 2003 through October 2011

- 500 mb Temperature (K/yr)
- 500 mb Water Vapor Mixing Ratio (g/kg)
- Total Precipitable Water

Effective Cloud Fraction (%)

- AIRS V5 January 2003 through October 2011
- AIRS V6.07 12 Months
- AIRS V5 12 Months
- V5 trendline
- V6.07 trendline
- V5-V6.07 trendline

AIRS V5 minus AIRS V6.07

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar
Trendline slopes of Global Mean Time Series
January 2003 through October 2011

<table>
<thead>
<tr>
<th></th>
<th>OLR W/m²/yr</th>
<th>Clear Sky OLR W/m²/yr</th>
<th>Cloud Fraction %/yr</th>
<th>500 mb Temp K/yr</th>
<th>Wₜₒₜ mm/yr</th>
<th>q₅₀₀ g/kg/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRS V5</td>
<td>-0.104</td>
<td>-0.040</td>
<td>0.260</td>
<td>-0.058</td>
<td>-0.039</td>
<td>-0.00325</td>
</tr>
<tr>
<td>V6.07</td>
<td>-0.038</td>
<td>-0.054</td>
<td>0.049</td>
<td>-0.006</td>
<td>0.012</td>
<td>0.00001</td>
</tr>
<tr>
<td>AIRS V5 minus AIRS V6.07</td>
<td>-0.066</td>
<td>0.014</td>
<td>0.211</td>
<td>-0.052</td>
<td>-0.050</td>
<td>-0.00326</td>
</tr>
</tbody>
</table>

V6.07 trendline slopes are closer to zero than those of V5
Comparison Summary

Version-6 is significantly improved with regard to Version-5 in every way with regard to T_s, ε_v, $T(p)$, $q(p)$, $\alpha\varepsilon$

$\text{OLR, OLR}_{\text{CLR}}$ both agree better with CERES (not shown today)

Version-6 AO is roughly comparable to Version-5

Version-6 gets my blessing for release

Congratulations to the entire AIRS Science Team and supporting cast!