CrIS Calibration/Validation Status

L. Larrabee Strow, H. Motteler, P. Schou, B. Imbiriba, S. Hannon

Physics Department and
Joint Center for Earth Systems Technology
University of Maryland Baltimore County (UMBC)

Memorial Get-Together for Scott Hannon:
Nov 27, 3:00 pm UMBC Physics Department
4th Floor Lecture Hall, Please RSVP to strow@umbc.edu

November 15, 2012
Overview

- Frequency calibration
- Short-wave high-resolution mode results
- Radiometric validation

Main Results

- Frequency calibration working very well
- SDRs exhibit boxcar ringing inconsistencies: up to 1K
- Hamming apodization reduces these problems significantly
- Comparisons to AIRS, IASI within 0.2K or less
- Evidence for a \(\sim0.2K\) systematic calibration error in far long-wave
- High resolution works very well! Could provide continuation for NASA carbon monoxide record
ν Calibration Overview

- CrIS In-orbit Neon Cal unchanged from TVAC!
- Examine time series of Neon calibration using (a) Long-wave and (b) Mid-wave bands.
- Calibration done daily using clear ocean tropical subsets

![Spectral Cal Difference between 2 Detectors with existing LUTs](image-url)

- 7.5 ppm Cal Error
Upwelling frequency calibration mirrors the Neon calibration of the metrology laser. If the CMO has not been updated (waits for a 2 ppm change), this means the metrology laser has indeed drifted. If the Neon was drifting, we would not see the same shift in the upwelling spectra (again assuming the CMO operator remains unchanged). Slight differences among FOVs.
The mid-wave frequency calibration shows a frequency drift very similar to long-wave. I do not know why the mid-wave frequency calibration varies by up to 3.5 ppm among FOVs. We saw this in the Feb. 25 data. D. Tobin’s relative calibration indicates this is incorrect.
SDR algorithm waits for a 2 ppm Neon shift to re-compute new CMO. Presumably that has not yet happened, so cannot test. Thus, upwelling calibration *roughly* follows Neon. Differences may be upwelling algorithm issues?
Radiometric Variability versus 9 Detectors

Enable NWP Centers to use common bias correction for all detectors. Lesson learned from IASI.

Biases vs Radiative Transfer Model (CRTM) simulated radiances

Standard deviation (over 9-FOVs) of Bias vs RTM simulated radiances

Y. Chen, NOAA STAR CRTM (LBLRTM)

L. Strow, UMBC SARTA (kCARTA)
Bias vs Interferometer Scan Direction
Boxcar Apodization, greatly reduced with Hamming, etc. apodization

Ringing differences with scan direction. Does not appear to be an algorithm bug. Also seen in low-wavenumber edge of water band, and in EDR residuals, even with apodization.
Noise Performance
Work by Mark Esplin, Utah State Space Dynamics Laboratory

Intro
Validation
High-Res Mode
CO
High-Res ν Cal
Intercal

Wavenumber (cm$^{-1}$)
Radiance (mW/m2 sr cm$^{-1}$)

CrIS Spec.
IASI Original
IASI - CrIS Res.
CrIS On-Orbit
CrIS On-Orbit Full Res
AIRS - CrIS Res.
UMBC has processed all the CrIS high-resolution mode data from Feb. 23, 2012 into calibrated radiances using CCAST.

- Liens on these radiances:
 - Non-linear correction not applied (no effect on shortwave)
 - Nominal geolocation (good enough for most purposes)
 - Not in SDR format
 - Uses our best-effort CMO apodization removal operators from the July time-frame.
 - These data recorded with the old FIR decimation filter

- We have computed clear-sky observed radiances for every observation

- For a single southern ocean granule we have compared these data to IASI data in the same region, suitably degraded to CrIS 0.8 OPD resolution.
Example High-Resolution Spectra

Wavenumber (cm$^{-1}$)

B(T) in K

Normal Mode

High-Res Mode −50K
Example Spectra: Shortwave Only

![Graph showing spectra with normal and high-resolution modes. The graph includes axes for wavenumber (cm^{-1}) and B(T) in K. The graph indicates that the high-resolution mode is not noise.](image-url)
UMBC developed a high-resolution CMO operator.

Matrix inversion to derive CMO operator condition number goes from 1 for center FOV to \(10^6\) for corner FOVs.

With careful filtering, high condition number can be handled.

Note below: large relative \(\nu\) offset of off-axis spectra; Left: Normal Mode, Right: High-resolution Mode.
Relative Error in CMO Corrections

Plot shows single uniform 3x3 spectra
Difference curves (from FOV5) are uniform in frequency
Correction errors close to radiances values for cold observations.
CMO Correction Errors Reduced with Hamming Apodization

Same data as in previous slide, but Hamming apodized
CMO Correction Errors in Brightness Temperature: Hamming

FOVn-FOV5 differences multiplied by 5X and offset by 260K
High-Resolution Validation: CrIS vs IASI B(T)

(a) CrIS/IASI Obs, Hamming Apodized.

(b) CrIS/IASI Obs, Hamming Apodized: Zoom.
High-Resolution Validation: CrIS vs IASI Biases
Biases with respect to ECMWF

(c) CrIS/IASI Bias, Hamming Apodized.
(d) CrIS/IASI Obs, Hamming Apodized: Zoom.

Note in (c,d) above, one expects IASI and CrIS window channels to differ by 0.1K due to diurnal variation in the SST. Here we use a constant diurnally averaged SST. Thus, the bias difference between CrIS and IASI is about 0.1K less than shown here for window channels!
“Retrieval” is just bias between Obs and Calc radiances for a single CO channel. Calc radiances use ECMWF. Remove scenes where window radiance bias > 5K (Clouds).
CO Retrievals from High-Resolution Mode Spectra
Left: CrIS, Right: MOPPIT
CO Retrievals from High-Resolution Mode Spectra
Frequency Calibration Using High-Resolution Short-Wave

- High-resolution data used to calibration Neon, 1 day’s worth
- High-resolution brings out very stable features with spectral contrast
Existing Neon calibration limited to non-polar clear ocean scenes (more below).

As previously stated, unable to achieve high Neon calibration accuracy with opaque LW, MW channels, which would allow calibration over the entire orbit.

High-resolution in the SW allows us to use the very high-peaking lines in the 2350 cm\(^{-1}\) region, indicated by green circles above.
LW Opaque Channel Calibration of Neon

(e) LW opaque Neon cal channels.

(f) LW vs SW cal channel kernels.

- Opaque LW channels include emission from 200 mbar. Leads to inaccurate NWP calculations (clouds, polar) with poor performance in the polar night.

- Moreover, LW opaque channel frequency calibration not accurate; presumably due to NWP radiance calculation errors.

- With high-resolution, can use extremely high-peaking CO₂ channel (5-10 mbar, 30+ km) with very good performance.
Present operational Neon: black circles, LW window, ± 40 degrees latitude.

LW opaque channels provide more observations (blue circles). But, apparent 5 ppm offset, and very poor performance in the polar night.

SW opaque using CrIS high-spectral resolution mode gives extremely good performance, low noise, well into the polar night portion of the orbit.

SW high-resolution agrees very well with LW window region Neon calibration, maybe 1 ppm.

IASI (METOP-A/B) uses these channels for all metrology laser calibration for all three bands.
Radiance Intercomparisons

Following slides are a small sample of radiometric intercomparisons between CrIS and AIRS/IASI.
CrIS/AIRS SNO BT PDF Differences: Dave Tobin/UW

CrIS/AIRS comparisons for Sample Wavenumber Regions

LW window 835 cm\(^{-1}\)

Upper Trop H\(_2\)O 1592 cm\(^{-1}\)

SW window 2510 cm\(^{-1}\)

BT Difference Distributions

- **LW window**: 0.020 ± 0.004 K
- **Upper Trop H\(_2\)O**: 0.067 ± 0.002 K
- **SW window**: -0.058 ± 0.003 K
CrIS Detector InterCal using AIRS/VIIRS:
Dave Tobin/UW
Only considering CrIS Inter-FOV differences
CrIS Bias vs IASI Bias (relative to ECMWF), tropics, ocean only

Very good agreement. But SST in calcs off by 0.1K! (maybe)
CrIS and IASI SNOs + DDs: SNOs for May 2012 (LW)
SNOs from JPL Sounder PEATE: 10 min, 8 km windows, S. Hemis: -73 deg S.

CrIS-IASI boxcar apodization has large ringing. Uncertain to cause, used all 4 IASI FOVs, all 9 CrIS FOVs for now.

Significant (for climate) offset in the longwave!

Red curve is CrIS from CCAST (UW/UMBC Matlab SDR testbed algorithm). CCAST much closer to IASI, but more work needed.

CrIS-IASI DD is bias double-difference from ECMWF
CrIS and IASI SNOs + DDs: SNOs for May 2012 (LW)
SNOs from JPL Sounder PEATE: 10 min, 8 km windows, S. Hemis: -73 deg S.

CrIS-IASI boxcar apodization has large ringing. Uncertain to cause, used all 4 IASI FOVs, all 9 CrIS FOVs for now.

Significant (for climate) offset in the longwave!

Red curve is CrIS from CCAST (UW/UMBC Matlab SDR testbed algorithm). CCAST much closer to IASI, but more work needed.

CrIS-IASI DD is bias double-difference from ECMWF
CrIS and IASI SNOs + DDs: SNOs for May 2012 (LW)
SNOs from JPL Sounder PEATE: 10 min, 8 km windows, S. Hemis: -73 deg S.

CrIS-IASI boxcar apodization has large ringing. Uncertain to cause, used all 4 IASI FOVs, all 9 CrIS FOVs for now.

Significant (for climate) offset in the longwave!

Red curve is CrIS from CCAST (UW/UMBC Matlab SDR testbed algorithm). CCAST much closer to IASI, but more work needed.

CrIS-IASI DD is bias double-difference from ECMWF
CrIS and IASI SNOs + DDs: SNOs for May 2012 (LW)
SNOs from JPL Sounder PEATE: 10 min, 8 km windows, S. Hemis: -73 deg S.

CrIS-IASI boxcar apodization has large ringing. Uncertain to cause, used all 4 IASI FOVs, all 9 CrIS FOVs for now.

Significant (for climate) offset in the longwave!

Red curve is CrIS from CCAST (UW/UMBC Matlab SDR testbed algorithm). CCAST much closer to IASI, but more work needed.

CrIS-IASI DD is bias double-difference from ECMWF
CrlS and IASI SNOs: Data for May 2012 (MW)

CrlS-IASI boxcar apodization again has ringing.

Very good agreement. Can we determine interconsistency below 0.05K?
CrIS-AIRS SNOs Locations
With 10-min, 8 km window obtain full latitude range!

Unlike IASI-AIRS or IASI-CrIS, wide latitude range of SNO’s.

This allows very detailed inter-comparisons as a function of scene type. Here we examine SNO differences with scene temperature for one channel.
2552 cm$^{-1}$ SNOs for AIRS, CrIS

Good number of SNOs over a large range of B(T)’s

CrIS hits a B(T) floor around 200K.
SNO AIRS-CrIS: Longwave
Early Global SNO Comparisons Using AIRS-to-CrIS Conversion
CCAST vs IDPS: Avg Radiometric Differences

Longwave

- FOVs 1-3, 4-6

Midwave: 0.006 K
- FOVs 1, 6, 9

Shortwave: 0.03 K
- Averaged over all FOVs for shortwave (no non-linear)
Possible Errors for High Temperature Scenes
Real part of 860 cm\(^{-1}\) vs Imaginary Part

Color scale is number of observations