Supplementing Space-based Sounding with Ground-based Sensors to Improve Monitoring of the Planetary Boundary Layer

> David M. Loveless University of Wisconsin-Madison

Timothy J. Wagner, Robert O. Knuteson University of Wisconsin-Madison

David D. Turner National Oceanic and Atmospheric Administration

Motivation

- 2017 Decadal Survey identified improving observations of the PBL as an area of future investment
 - How can we improve our estimates of thermodynamic profiles in the PBL?
- NRC report in 2009 "Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks" suggested the development of a network of ground-based sensors to supplement space-based sounding

Example: Upwelling vs. Downwelling

Ground-based/Space-based Synergies

- Ebell et al. (2013) explored a synergy between a ground-based microwave radiometer and IASI.
 - Synergy increases the information of the retrieval by a factor of 1.8 (temperature) and 1.5 (water vapor) compared to ground-based MWR alone
 - Similarly the synergy resulted in decreases in uncertainties
- Reverse the question: how much information does a ground-based instrument provide when combined with existing space-based sounder?

Objectives:

- 1. What is the improvement in information content of the retrieval when we add a ground-based sensor to a retrieval with a space-based sensor?
 - Calculate degrees of freedom to quantify information
- 2. How does the information content change with varying water vapor concentrations?
 - Consider three stations in different climate regimes

Sensors of Consideration

- Sensors of consideration:
 - AERI (ground-based)
 - AIRS, CrIS, IASI
 - Nadir only
 - ABI, GIIRS
 - 49 degrees for SGP simulates GOES-16 look angle
 - 54 degrees for ENA simulates Meteosat-11 look angle
 - Not run for NSA

Calculating Degrees of Freedom

A priori covariance matrix: $\mathbf{S}_{a j,k} = \text{CORR}(\mathbf{x}_{j}, \mathbf{x}_{k}) \sigma_{\mathbf{x}j} \sigma_{\mathbf{x}k}$

- computed from clear sky profiles for each season for each station

Averaging Kernel: $\mathbf{A} = (\mathbf{K}^{\mathsf{T}}\mathbf{S}_{e}^{-1}\mathbf{K} + \mathbf{S}_{a}^{-1})^{-1} (\mathbf{K}^{\mathsf{T}}\mathbf{S}_{e}^{-1}\mathbf{K})$

- Use instrument noise for ${f S}_{e}$

DOF = trace(A)

Atmospheric Profiles

- Three ARM stations to get a variety of conditions:
 - Lamont, OK (SGP)
 - Azores (ENA)
 - Utqiagvik, AK (NSA)
 - Radiosonde profiles from Oct 2013 Sept 2019
- Cloud clearing: RH > 90% is considered a cloud
 - 3765 clear sky profiles at SGP (Lamont, OK)
 - 464 clear sky profiles at ENA (Azores)
 - 491 clear sky profiles at NSA (Utqiagvik, AK)

Radiative Transfer

- OSS (fast model, derived from LBLRTM)
 - Allows for the analysis to be run over a large number of profiles
- Trace gases: $CO_2 N_2 O O_3 CH_4 H_2 O$
- CAMEL emissivity monthly climatology for each site
- Use AIRS 101 pressure levels
 - Have found this degrades the information the AERI provides

Open Questions on Precipitable Water

 Does changing S_a cause that pattern or is there really less signal in a dry environment?

- Why does that pattern exist?
 - Why for the full troposphere but not for the near surface layer?

Open Questions about Ground-based Network:

- Would not solve PBL sounding issues over ocean, thus limited improvements in 3+ day forecasts
- Being over land, a ground-based network would provide strong improvements in 1-3 days forecasts
- Works best with a geostationary sounder
- How many locations for this network?

Conclusions

- Adding the AERI to the retrieval increases the information content by a factor of 1.5 across all three stations
- Synergy (both instruments into one retrieval) produces more information content than an a posteriori combination of separate retrievals
- Working to expand this analysis to vertical resolution and uncertainties
 - What about cloudy sky conditions?