Jet Propulsion LaboratoryCalifornia Institute of Technology
Pasadena, California

Drought Cascades in the Hydrologic Cycle: A Set of Case Studies from Remote Sensing

Alireza Farahmand¹, JT Reager¹

1) NASA Jet Propulsion Laboratory, California Institute of Technology

AIRS STM October 15rd 2020

Drought and Environment

2018 California Wildfire

2012 Midwest drought

Drought and Environment

Drought Types

- Meteorological: precipitation deficit
 - ✓ SPI: Standardized Precipitation Index

- Agricultural: soil moisture deficit
 - ✓ SSI: Standardized Soil Moisture Index

- Hydrological: Shortage of surface or sub-surface water supplies
 - ✓ GRACE-DSI: GRACE-Drought Severity Index

Motivation

- Drought signals in Illinois
- Drought signal is transferred with delay from precipitation to soil moisture and groundwater
- Smoother and increased persistent with depth in soil column

Changnon 1987

Case Studies

- Use remote sensing to look at larger spatial scales
- Investigate the cascading phenomenon across multiple major droughts

Data Inputs

- Monthly AIRS Vapor Pressure Deficit (VPD)
 - Derived from Temperature and Relative Humidity
- Monthly Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS) *Precipitation (P)*
- Monthly GRACE Terrestrial Water Storage (TWS)
- Monthly MERRA reanalysis *Soil Moisture (SM)*
- ✓ Spatial Resolution: 0.5°
- ✓ Data Length: 2003-2017

Methodology

Derive standardized scores for VPD, P, SM, and TWS

$$DI_{ij} = \frac{x_{ij} - \bar{x}_j}{\sigma_j}$$

IF DI
$$> 0 \longrightarrow Wet$$
IF DI $< 0 \longrightarrow Dry$

 DI_{ij} Drought Indicator of month j for year i x_{ij} variable of month j for year i \bar{x} mean variable for month j σ_{j} standard deviation of precipitation for month j

Time scale selection

Different smoothing scales for all variables

• 25-month scale appears to exhibit the drought signals more clearly

Midwest Drought

- Flash drought with onset determined by VPD
- Largely dominated by extreme deficit of VPD and Precipitation
- Relatively smaller impacts on TWS and particularly SM

Texas Drought

- Also initiated by anomalously high VPD and low Precipitation
- Precipitation leads the onset
- Prolonged period of 24 months stress on water storage

Southeastern Drought

- Dominated by the precipitation deficit with relatively large impacts on TWS
- Precipitation leads the onset

California Drought

- Initiated by Precipitation deficit and dominated by extreme deficits in TWS
- ❖ VPD does not show drought signals for this event

Drought Cascade

- ➤ Onset, termination, and timing of minimum are transferred with delay from P to SM and to TWS
- ➤ VPD onset and timing of minimum are on average 1.3 months earlier than precipitation

All Events					
Index	Onset (month)	Termination (month)	Timing of Minimum (month)		
VPD	-1.3	19.7	-1.3		
P	0	16	0		
SM	2.5	22.5	1.8		
TWS	7.5	36	12.3		

Drought Cascade

- > SM signals are smoother and longer than P
- ➤ However, severity of P and SM similar
- > TWS intensity stronger than SM as TWS records entire water storage
- > TWS duration and severity signals larger than other variables

All Events					
Index	Maximum Intensity	Duration (month)	Severity		
VPD	-2.1	21	-34.7		
P	-2	16	-24.8		
SM	-1.6	20	-24.4		
TWS	-1.8	28.5	-43		

Summary

- We looked at the development of four major drought events of Midwest, Southeastern, Texas, and California using remote sensing information
- We used four variables of vapor pressure deficit (VPD), precipitation, terrestrial water storage, and soil moisture
- Results indicate that a cascading pattern may exist between precipitation, soil moisture and terrestrial water storage
- VPD appears to not exhibit a straight relationship with the rest of the variables
- However, VPD strength in detecting drought onset can be seen
- Future studies could include additional events and further remote sensing variables such as NDVI and Evapotranspiration