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Isoprene = the dominant biogenic VOC emitted to atmosphere; 
uncertainties in bottom-up emissions and chemistry persist

535 570

150

Isoprene Methane Anth VOCs

Global Annual Emissions (Tg/yr)

Guenther et al., 2012

Bottom-up emissions sensitive to land cover, 
meteorology, canopy parametrization, etc.

Arneth et al., 2011

Same emission model & met data, 
different vegetation = 463 v 750 TgC/y

IS
O

P 
em

iss
io

ns
 (T

gC
)

VOCs CO, O3, HCHO

Secondary Organic 
Aerosols (SOA)

OH, hν

Iso
prene + 

others

Isoprene affects aerosols, O3, atmospheric oxidation, N-cycling



Isoprene = the dominant biogenic VOC emitted to atmosphere; 
uncertainties in bottom-up emissions and chemistry persist

OH = primary atmospheric oxidant
Model OH is generally too low over low-NOx

isoprene source regions

Model OH with 
standard mechanism

Lelieveld et al., 2008

isoprene + OH 

HO2

HOx = HO2 + OH
NOx = NO2 + NO

How much OH recycling occurs in high 
isoprene, low-NOx conditions?

deposition

High NOx Low NOx

NO NO2

Model OH with 
enhanced recycling

? 

e.g., Lelieveld et al., 2008; 
Fuchs et al., 2013

RO2 +



Space-based HCHO provides top-down constraints on emissions;
uncertain due to chemical complexities and non-isoprene sources 

Bottom-up emissions Top-down emissions

Bauwens et al., 2016

We must rely on models to accurately capture these effects 

Based on OMI HCHO

HCHO = formaldehyde, a high-yield isoprene oxidation product
Short lifetime, detectable from space in near-UV 

• HCHO yield from isoprene is a non-linear functions of NOx
• HCHO also produced from fires, other VOCs

Wolfe et al., 2016



Measurements of TIR absorption cross section of isoprene enable direct 
measurements of isoprene from space

Brauer et al., 2014

Cross-track Infrared Sounder (CrIS): 
• 10/2011 (Suomi-NPP), 11/2017 (NOAA-20), 

expected 2022 
• Near global coverage twice daily
• Afternoon overpass
• Low noise

OE retrievals over Amazonia (Fu et al., 2019)

r = 0.6
slope = 0.9

CrIS isoprene column

ν28 ν27

CrIS v aircraft

Individual CrIS spectra, 30 Sept 2014

Key for isoprene!



We employ an artificial neural network to derive the global isoprene 
distribution from the CrIS Tb difference 

Monthly-mean Tb difference: ΔTb = Tb,off-peak – Tb,peak

Single-footprint, cloud-screened Level 1B data;
Pro: fast way to process a large dataset (~9e6 spectra/day)

Con: Can be subject to interferences

ν28

HNO3 column
Isoprene 
column

ΔTb

Satellite view angle

Thermal contrast

H2O vapor column

Surface pressure

Input layer Hidden layers

Output layer

e.g., IASI NH3, methanol, formic acid, 
PAN, acetone (Whitburn et al., 2016; 

Franco et al., 2018; 2019)



The first global space-based isoprene distribution

GEOS-Chem v11-02e isoprene columnCrIS isoprene column

January 2013

July 2013

Observed Amazonia hotspots 
more localized than in GEOS-Chem



CrIS isoprene is consistent with OE retrievals and aircraft measurements

July 2013, using GEOS-Chem 
as a transfer standard

r = 0.6
slope = 1.3

r = 0.7
slope = 1.2

r = 0.5
slope = 1.3

Highest observed isoprene 
over Ozarks

r = 0.9
slope = 0.8

Amazonia OE retrievals (Fu et al., 2019)



Space-based isoprene and HCHO provide combined constraints on  
emissions and chemistry in isoprene source regions

Isoprene column

GEOS-Chem, July 2013

Isoprene emissions (MEGANv2.1)

Isoprene BL lifetime

Isoprene column distribution 
distinct from that of emissions

Highest 
emissions

Highest 
columns

τ ~ 1h

τ > 12h



Space-based isoprene and HCHO provide combined constraints on 
emissions and chemistry in isoprene source regions

Isoprene column

Isoprene emissions (MEGANv2.1)

Isoprene BL lifetime

Isoprene column distribution 
distinct from that of emissions

Global ensemble of 
isoprene column v 
isoprene emissions

High NOx, 
steady state

slope ~ τisoprene

Low NOx, non-SS
Suppressed OH

At low NOx, isoprene increases superlinearly
as it begins affecting its own sink

GEOS-Chem, July 2013



Space-based isoprene and HCHO provide combined constraints on 
emissions and chemistry in isoprene source regions

GEOS-Chem, July 2013

Isoprene emissions (MEGANv2.1)

HCHO is more buffered to OH variability:
• Loss to photolysis still occurs at low OH
• Loss proportional to [isoprene]×[OH]

Global ensemble of 
isoprene:HCHO column 
ratio v isoprene lifetime

r = 0.94

Isoprene column

Isoprene:HCHO ratio = proxy 
for atmospheric oxidation 
capacity in source regions



Space-based isoprene:HCHO ratio supports current model treatment of OH 
chemistry in isoprene source regions

CrIS isoprene:OMI HCHO GEOS-Chem isoprene:HCHO

GEOS-Chem-CrIS difference

Lowest model NO2 columns not 
seen in observations

Agreement within 10-40% at                
low-to-moderate NOx argues against

substantial missing OH recycling 

OMI QA4ECV 
HCHO and NO2



Observed isoprene lifetime consistent with observed NO2 over Amazonia,    
large scale NOx bias evident in model

slope = 0.18

τisop = Ωisop:ΩHCHO/0.18

Measured lifetime agrees with 
chemical expectations = additional 

confirmation of our approach

Large scale NOx bias likely due to underestimated 
soil NOx emissions (Liu et al., 2016)



A long-term record of isoprene from CrIS will give us new insights into 
interannual variability and chemistry-climate couplings

April 2012-October 2018

Onset of 2015/2016 El Niño = 
warmer temperatures, 

drought stress?
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of an arbitrary spectrum y onto the NH3 spectral signature (a spectral Jacobian K corresponding to a change in
NH3) resulting in a single pseudoquantitative number (called hereafter HRI, for “hyperspectral range index”):

HRI =
KT S−1

y (y − y)
√

KT S−1
y K

, (1)

with y a mean background spectrum associated with Sy . Note that the HRI defined here is normalized such
that it has a mean of zero and a standard deviation of 1 for spectra without observable quantities of NH3.
When the HRI exceeds 3 or 4 (standard deviations) one can be reasonably confident that detectable NH3

are present in the observed scene. This method is derived from the main formula appearing in optimal
least squares estimates but turns out to be equivalent to the statistical method called “linear discrimination
analysis,” which is commonly used in classification problems [Clarisse et al., 2013]. The HRI detection method is
fast and extremely sensitive (up to an order of magnitude more sensitive than brightness temperature differ-
ence techniques), because very wide spectral ranges can be used and because it captures spectral correlation
better than forward models can. A forward model is used only for the calculation of the Jacobian, but since
Jacobians are essentially spectral differences, the majority of the forward model errors cancel out. Thus, the
errors introduced to the HRI by the forward model are, in general, unimportant. As such, the detection method
avoids a lot of the problems of regular optimal estimation methods.

The HRI, a measure for the NH3 signature strength in the spectrum, is not only dependent on the amount of
NH3 but through the radiative transfer also on the thermal state of the atmosphere. The principal parameter
here is the thermal contrast defined as the temperature difference between the atmospheric boundary layer
and the surface. For a fixed NH3 column, a larger thermal contrast (TC) will give rise to larger spectral signatures
and vice versa. HRIs can therefore be converted into reasonably accurate columns by taking into account
the thermal contrast via two-dimensional lookup tables (LUT) mapping the pair (HRI, TC) to NH3 columns.
A retrieval algorithm based on this idea was developed in Van Damme et al. [2014a], who also presented a
way to realistically estimate uncertainties for each measurement. The high sensitivity of this LUT-based HRI
method was apparent in this first study with the discovery of a large number of new highly localized hot spots,
retrieval results for the evening overpass of IASI, and for the first time detection of NH3 transport over oceans.
Quantitatively, the algorithm showed a good correlation with independent retrievals using optimal estima-
tion techniques. These measurements were compared with the LOTOS-EUROS model output in Van Damme
et al. [2014b] and to in situ measurements in Van Damme et al. [2015a], and agreement was overall achieved
within measurement uncertainty, although limitations of both models and in situ measurements were also
exposed. These studies also highlighted the difficulties in comparing satellite measurements with models or
in situ data and stressed the need to very carefully take into account the measurement uncertainties. They also
exposed the following limitations of the LUT-based HRI method: (1) Using constant NH3 vertical profiles can
introduce potentially large errors (in Van Damme et al. [2014a], one fixed profile over land is used which peaks
at the surface and one over oceans which peaks around 1400m). (2) While TC is taken into account, residual
dependencies on, for instance, the complete temperature profile are not. (3) Instrumental noise causes a high
bias of the measurements [Van Damme et al., 2015a], as a result of the fact that each HRI is always converted
into a positive column. Especially for observations where the sensitivity to NH3 is low this can lead to drastic
positive mean biases (even if the associated estimated uncertainty on the individual observations are correct).

In this paper we propose an extension of the LUT-based HRI method from Van Damme et al. [2014a]. Instead
of using a two-dimensional LUT, we use here a feedforward neural network (NN) for the conversion of HRI to
NH3 columns. A NN can approximate any (unknown or difficult to calculate) function Y = f (x) (under mild
assumptions) by a transfer function F(W, x) which can be readily evaluated. The weights W of the function
F are obtained via training on a training set {yi = f (xi)} (see, e.g., Hadji-Lazaro et al. [1999] and Turquety et al.
[2004] for earlier satellite retrieval schemes that used NNs). As both rely on a database of training data, a NN
can be seen as a generalization of a LUT. However, the important difference is that a LUT needs to store an
output value for each combination of its input parameters, and the size of the LUT therefore grows exponen-
tially with the dimension of the table. The great strength of a NN lies in its ability to cope with hundreds of
input parameters, thereby offering a lot more flexibility than a two-dimensional LUT, while not requiring the
expensive and, in many cases, repetitive calculations of spectral fitting approaches. So rather than using TC
as an input parameter, the NN allows use of the full temperature profile as input. Other input parameters that
we will use are surface emissivity, surface temperature, the pressure and water vapor vertical profiles, satellite
viewing angle, and information on the vertical profile shape of NH3.

WHITBURN ET AL. NEW IASI-NH3 NN RETRIEVAL ALGORITHM 6583

Spectral 
Jacobian

Background spectral 
covariance

Mean background 
spectrum

Measured 
spectrum

HRI uses full active spectral range for 
isoprene = enhanced sensitivity, 

less subject to interferences

Next steps: next generation CrIS isoprene retrieval based on     
Hyperspectral Range Index (HRI) CrIS HRI looks more 

“isoprene-like” than ΔTb
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Next steps: apply HRI-based retrieval to look at other species, advance 
understanding of VOC sources and chemistry-climate-ecosystem interactions

Species Primary Sources
Methanol Biosphere, biomass burning

Ethene Biosphere, biomass burning, vehicles

Ethyne Combustion

Acetone Biosphere, biomass burning

PAN Urban emissions, biomass burning

HCN Biomass burning

Acetic acid Biosphere, biomass burning

Ethane Natural gas, biofuel, biomass burning

Benzene Combustion

VOCs CO, O3, HCHO

SOA

OH, hν

Iso
prene + 

others
Simultaneous measurements of multiple VOCs from CrIS will provide 

powerful new information to better understand biosphere-atmosphere 
interactions, biomass burning, and pollution across the globe!
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Science questions to be answered by long-term TIR sounder records

1) What does interannual variability tell us about the links between climate and VOC emission 
drivers?

2) How are VOC emissions (and OH!) changing over time?
3) As anthropogenic emissions decrease in the US and elsewhere, how is atmospheric composition 

changing?  

We can do A LOT of science with even a weak signal! More species would be key to answering the below 
questions: 



What should be the highest priorities for new trace gas products?

1) A greater suite of species active in TIR (not detectable with other sensors!) for doing detailed 
source apportionment globally over long timescales

2) Evaluation of sensitivity (AK) over different source types (biogenic versus biomass burning, etc)
3) Near-real-time quick look-type product for specific events (e.g., large wildfires)

Species Primary Sources
Methanol Biosphere, biomass burning

Ethene Biosphere, biomass burning, vehicles

Ethyne Combustion

Acetone Biosphere, biomass burning

PAN Urban emissions, biomass burning

HCN Biomass burning

Acetic acid Biosphere, biomass burning

Ethane Natural gas, biofuel, biomass burning

Benzene Combustion



What are the key observational gaps?

1) Diurnal variability: net biogenic VOC emissions are high during the day and low (or negative!) at 
night; can we quantify emission processes from space versus just net emission strength?

2) Smaller footprints to look at fire impacts and urban plumes; more information about BVOC 
emissions as a function of plant type

Müller et al., 2007
Kaiser et al., 2018


