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Isoprene = the dominant biogenic VOC emitted to atmosphere;
uncertainties in bottom-up emissions and chemistry persist

Global Annual Emissions (Tg/yr)
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Bottom-up emissions sensitive to land cover,
meteorology, canopy parametrization, etc.
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CO, O3, HCHO Same emission model & met data,

different vegetation = 463 v 750 TgC/y

Secondary Organic
Aerosols (SOA)

Isoprene affects aerosols, O;, atmospheric oxidation, N-cycling

/]



Altitude (km)

Isoprene = the dominant biogenic VOC emitted to atmosphere;
uncertainties in bottom-up emissions and chemistry persist

OH = primary atmospheric oxidant
Model OH is generally too low over low-NO,
isoprene source regions

How much OH recycling occurs in high
isoprene, low-NO, conditions?
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Space-based HCHO provides top-down constraints on emissions;
uncertain due to chemical complexities and non-isoprene sources

HCHO = formaldehyde, a high-yield isoprene oxidation product

Short lifetime, detectable from space in near-UVv
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* HCHO yield from isoprene is a non-linear functions of NO,
 HCHO also produced from fires, other VOCs
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We must rely on models to accurately capture these effects
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Measurements of TIR absorption cross section of isoprene enable direct
measurements of isoprene from space
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We employ an artificial neural network to derive the global isoprene

distribution from the CrIS T, difference

Monthly-mean T, difference: AT, = T, o¢t.peak — Th,peak

Single-footprint, cloud-screened Level 1B data;
Pro: fast way to process a large dataset (~9e6 spectra/day)

Con: Can be subject to interferences
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The first global space-based isoprene distribution
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CriS isoprene is consistent with OE retrievals and aircraft measurements

July 2013, using GEOS-Chem
as a transfer standard

Amazonia OE retrievals (Fu et al., 2019)
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Space-based isoprene and HCHO provide combined constraints on

emissions and chemistry in isoprene source regions
GEOS-Chem, July 2013
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Space-based isoprene and HCHO provide combined constraints on

emissions and chemistry in isoprene source regions
GEOS-Chem, July 2013
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Space-based isoprene and HCHO provide combined constraints on
emissions and chemistry in isoprene source regions

GEOS-Chem, July 2013 Global ensemble of
isoprene:HCHO column
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Space-based isoprene:HCHO ratio supports current model treatment of OH

chemistry in isoprene source regions
CrlS isoprene:OMI HCHO GEOS-Chem isoprene:HCHO
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Observed isoprene lifetime consistent with observed NO, over Amazonia,
large scale NO, bias evident in model
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A long-term record of isoprene from CrIS will give us new insights into
interannual variability and chemistry-climate couplings

Onset of 2015/2016 El Nifio =
warmer temperatures,
drought stress?
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Next steps: next generation CrlS isoprene retrieval based on

Hyperspectral Range Index (HRI) CrlS HRI looks more
“isoprene-like” than AT,
CriS AT, CriS HRI
Measured Mean background : —
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Spectral Background spectral
Jacobian covariance

HRI uses full active spectral range for
isoprene = enhanced sensitivity,
less subject to interferences




Next steps: apply HRI-based retrieval to look at other species, advance
understanding of VOC sources and chemistry-climate-ecosystem interactions

Simultaneous measurements of multiple VOCs from CrIS will provide
powerful new information to better understand biosphere-atmosphere
interactions, biomass burning, and pollution across the globe!

m Primary Sources

Methanol Biosphere, biomass burning
Ethene Biosphere, biomass burning, vehicles
Ethyne Combustion

CO, O3, HCHO Acetone Biosphere, biomass burning
PAN Urban emissions, biomass burning
HCN Biomass burning

Acetic acid Biosphere, biomass burning
Ethane Natural gas, biofuel, biomass burning

Benzene Combustion
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Science questions to be answered by long-term TIR sounder records

We can do A LOT of science with even a weak signal! More species would be key to answering the below
questions:

Amazonia
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1) What does interannual variability tell us about the links between climate and VOC emission
drivers?

2) How are VOC emissions (and OH!) changing over time?

3) As anthropogenic emissions decrease in the US and elsewhere, how is atmospheric composition
changing?




What should be the highest priorities for new trace gas products?

m Primary Sources

Methanol Biosphere, biomass burning

Ethene Biosphere, biomass burning, vehicles
Ethyne Combustion

Acetone Biosphere, biomass burning

PAN Urban emissions, biomass burning
HCN Biomass burning

Acetic acid Biosphere, biomass burning

Ethane Natural gas, biofuel, biomass burning
Benzene Combustion

1) A greater suite of species active in TIR (not detectable with other sensors!) for doing detailed
source apportionment globally over long timescales

2) Evaluation of sensitivity (AK) over different source types (biogenic versus biomass burning, etc)

3) Near-real-time quick look-type product for specific events (e.g., large wildfires)




What are the key observational gaps?
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1) Diurnal variability: net biogenic VOC emissions are high during the day and low (or negative!) at
night; can we quantify emission processes from space versus just net emission strength?

2) Smaller footprints to look at fire impacts and urban plumes; more information about BVOC
emissions as a function of plant type




