Version 7 Level 1B Radiometric Calibration Updates

Thomas S. Pagano
George Aumann, Steven E. Broberg, Evan M. Manning, Ken Overoye*
Chris Wilson

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 tpagano@jpl.nasa.gov, (818) 393-3917, http://airs.jpl.nasa.gov

*BAE Systems, Nashua New Hampshire (Retired)

AIRS Science Team Meeting

October 6, 2020

Overview

- AIRS radiances are of high value to the scientific community
 - AIRS measures the upwelling Earth's hyperspectral infrared radiances with high precision and accuracy and global daily coverage
 - AIRS data have been nearly continuous in time, beginning in September 2002 and continuing to the present
 - AIRS data are used for climate benchmarking and radiance trending
 - AIRS is a cross-calibration reference sensor in GSICS
 - AIRS data are assimilated into reanalysis models
- Radiometric Calibration Coefficients Updated
 - The current operational version uses coefficients derived pre-flight
 - Updates provided to polarization, emissivity, nonlinearity (V7.1)
- V7.1 differences from V5:
 - Reduced L/R Assymetry in Cold Scenes
 - Lower radiometric uncertainty

AIRS Radiometric Calibration Equations

Scene Radiance

$$L_{ev} = L_{o}(\theta) + \frac{c_{1}'(dn_{ev} - dn_{sv}) + c_{2}(dn_{ev} - dn_{sv})^{2}}{[1 + p_{r}p_{t}cos2(\theta - \delta)]}$$

Mirror Polarization Contribution

$$L_{o}(\theta) = \frac{L_{sm}p_{r}p_{t}\left[cos2(\theta - \delta) - cos2(\theta_{sv,i} - \delta)\right]}{\left[1 + p_{r}p_{t}cos2(\theta - \delta)\right]}$$

Gain Term

$${c_{1}}' = \frac{[\varepsilon_{obc} P_{obc} - L_{o}(\theta_{obc})][1 + p_{r} p_{t} cos 2\delta] - c_{2} (dn_{obc} - dn_{sv})^{2}}{(dn_{obc} - dn_{sv})}$$

- T. Pagano et al., "Reducing uncertainty in the AIRS radiometric calibration", Proc. SPIE 10764-23, San Diego, CA (2018)
- T. Pagano et al., "Pre-Launch and In-flight Radiometric Calibration of the Atmospheric Infrared Sounder (AIRS)," IEEE TGRS, Volume 41, No. 2, February 2003, p. 265
- T. Pagano, H. Aumann, K. Overoye, "Level 1B Products from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft", Proc. ITOVS, October 2003

 $L_{ev} = Spectral \ Radiance \ in \ the \ Earth \ Viewport \ (W/m2-sr-\mu m)$

 $L_{sm} = Spectral \ Radiance \ of the Scan Mirror for Unity$

Emissivity at T_{sm} (W/m²-sr- μ m)

 $L_o = Spectral \ Radiance \ Correction for Scan \ Mirror \ (W/m^2-sr-\mu m)$

 $c_1 = Instrument \ gain \ (W/m^2-sr-\mu m-counts)$

 c_2 = Instrument nonlinearity (W/m²-sr- μ m-counts²)

 dn_{ev} = Digital counts while viewing Earth for each footprint and scan (counts)

 dn_{sv} = Digital counts while viewing Space for each scan (counts)

 $p_r p_t$ =Product of scan mirror and spectrometer polarization diattenuation (unitless)

 θ = Scan Angle measured from nadir (radians)

 δ = Phase of spectrometer polarization (radians)

 P_{obc} = Plank Blackbody function of the OBC blackbody at temperature T_{obc} (W/m²-sr- μ m)

 T_{obc} = Telemetered temperature of the OBC blackbody (K) with correction of +0.3K.

 ε_{obc} = Effective Emissivity of the blackbody

 dn_{obc} = Digital number signal from the AIRS while viewing the OBC Blackbody

V7.1 Uses Space Views to Compute Polarization Terms

- Regression of polarization response to every space view in the mission between 2003-2017 (171 mo)
- Plots and Data from Evan Manning

$$(dn_{sv,i} - dn_{sv,i})c_1' = -L_{sm}p_r p_t [cos2\theta_{sv,i}cos2\delta + sin2\theta_{sv,i}sin2\delta + cos2\delta]$$

V7.1 Polarization Coefficients improve L/R Asymmetry

- Polarization Amplitude
 Similar to V5
- V7.1 AB Side Dependent
- V7.1 Polarization
 Amplitude Time
 Dependent (Mostly only affects M5)
- V5 Phase binary due to use of sign on p_rp_t rather than true phase
- V7.1 Phase channel and time Dependent

- AIRS Cal Subset: AIRXBCAL for V5
- 50S to 50N, Tsc < 210K
- 1/3 of Scan Right 1/3 of Scan Left
 - V7.1 Curve produced using ez_rad_conv (V5 to V7)
- Data from E. Manning

Space View Roll Test Confirms a0=0

Residual Radiance (a0 = 0)

L1B v7.1 spaceview handling update

- In addition to the coefficient changes, v7.1 L1B will modify the logic which combines observations from the four space view ports to estimate the zerosignal level (offset)
 - The spaceviews will be adjusted to a common level to compensate for small polarization-related biases
 - The spaceviews closest to Earth will not be used for a region near the south pole where an extraneous signal has been observed.

V7.1 Coefficients use more pre-flight test data than V5

- V5 based on Test Number 1 and 2
- V7.1 based on Tests 1-14
- V7.1 Radiometric Coefficients derived using V7.1 Polarization Coefficients

Post Field Stop

		Number	Side	AOI	200 K	205 K	220 K	230 K	240 K	250 K	265 K	280 K	295 K	310 K		
V5 V7.1		1	Α	N		1687	1692	1693	1698	1704	1710	1718	1719	1727		
		2	В	N		1688	1689	1696	1697	1705	1706	1715	1720	1726		
		3	Α	40	1827*	1830	1841	1844	1849	1852	1857	1860	1865*	1872		
		4	В	40	1828*	1829	1842	1843	1850	1851*	1858	1859	1866	1871		
			Side	AOI	200 K	205 K	220 K	230 K	240 K	250 K	265 K	280 K	295 K	310 K		
		5	AB	N		1685	1690	1694	1699	1702	1708	1716	1721	1724		
		6	AB	N		1686	1691	1695	1700	1703	1709	1717	1722	1725		
		7	AB	40	1825*	1832	1839	1845	1848	1853	1855	1861	1864	1869		
		8	AB	40	1823*	1831	1840	1846	1847	1854	1856	1862	1863	1870		
		Pre-Fie	eld S	top												
			Side	AO <mark>l</mark>	197 K	207 K	221 K	235 K	250 K	265 K	280 K	295 K	310 K	325 K	340 K	357 K
		9	Α	N	528	534	540	548	554	560	569	575	581	587	593	599
		10	Α	N	530	537	542	551	556	563	571	577	582	588	594	601
		11	Α	N	533	539	545	551	559	565	572	578	584	590	596	602
		12	В	N	529	535	541	549	555	561	568	574	580	586	592	598
		13	В	N	531	536	543	550	557	562	570	576	583	589	595	600
		14	В	N	532	538	544	550	558	564	573	579	585	591	597	603

V7.1 Coefficients very close to V5

- Effective Emissivity Smoothed over Modules
- No A/B Dependence
- Nonlinearity Smoothed Within Each Module
- Nonlinearity AB Side Dependent
- Deviation from fit taken as 'uncertainty' on per ch. basis

T. Pagano, Candidate Coefficients for V7 L1B: V7p, JPL Internal Memorandum, AIRS Project Office, ADF 1006, May 11, 2020

V7.1 has lower residuals than V5 to pre-flight test data

V7.1 Residual Errors for All Test

V7.1 RMS Error over all Tests

V7.1 Residuals for Individual Tests

V7.1-V5 Greatest at cold scenes. V7.1 has slight time dependence

AIRS V7.1-V5 Compared to CHIRP L1C Biases

E. Manning, 'ADFM: v7 changes to v5 compared to CHIRP CrIS SNPP vs v5 biases', ADF TBD, 10/5/20

AIRS Radiometric Accuracy Improved in V7.1

Errors at 260K by Contributor

- All Errors are 1-sigma and RSS of contributors
- Height of contributors within each bar is percentage of total
- V5 errors dominated by polarization uncertainty
- V7.1 errors dominated by Nonlinearity and OBC Emissivity
- V7.1 Results are Preliminary

V7.1 Temperature Dependence

Pagano, T.S., H. Aumann, S. Broberg, C. Canas, E. Manning, K. Overoye, R. Wilson, "SI-Traceability and Measurement Uncertainty of the Atmospheric Infrared Sounder Version 5 Level 1B Radiances", Remote Sens. 2020, 12, 1338; doi:10.3390/rs12081338

Summary and Conclusions

- Modest improvements to the AIRS Level 1B calibration coefficients have been made based on a better under understanding of pre-flight and in-flight measurements. No impact to trends except M5
- Polarization changes verified to L/R Asymmetry
- Space views corrected two ways
 - Remove stray signals at poles
 - Offset by median relative to SV1 to remove polarization bias amongst SV's
- Radiometric coefficients updated. Use more pre-flight data than V5
- Improved knowledge of nonlinearity and role of a0
- V7.1 Differences with V5 mostly at cold scenes and less than 200 mK
- V7.1-V5 differences compare favorably in some modules with biases seen in AIRS L1C-CHIRP
- Radiometric Uncertainty in V7 expected to be better in M5 and M9, M10 due to better knowledge of polarization