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§ The purpose of this effort is to use MODIS data to refine our 
knowledge of post-launch AIRS point spread functions (PSFs), 
including suspected changes over the mission.

§ Deriving mathematical optimization formulation for reconstruction 
of AIRS spatial response functions from AIRS and MODIS data.

Motivation and Approach
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AIRS Data

§ AIRS spatial response is different for each of 2378 channels and 90 
scan angles.

§ Channels range from 3.7 μm to 15.4 μm
§ Spatial resolution is 13.5 km
§ Granule is 90 scan angles by 135 scans

§ 240 granules per day

§ Match AIRS and MODIS radiances.
§ Resample MODIS radiances onto AIRS PSF grid

• AIRS PSFs are 39x39 pixels, 0.04 degrees / pixel
• Each AIRS footprint corresponds to 40x40 MODIS pixels
• MODIS channel 31 used with 1 km resolution

AIRS granule
Channel 776 (913.4 cm-1), 

window channel
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Minimization Problem

We want to reconstruct a point spread function Ki by solving the
following minimization problem:

AIRS PSF Reconstruction - Mathematical Formulation

AIRS is a low-spatial-resolution instrument, and MODIS is a high-spatial-resolution instru-
ment. A single AIRS pixel is as large as 39⇥ 39 block of pixels in MODIS.

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial response:

LAIRS,i,sc =

P
x,y Li,sc(x, y)Ki(x, y)P

x,y Ki(x, y)
,

Given radiance LAIRS,i,sc captured by AIRS instrument, we can correct it, obtaining L0
AIRS,i,sc

[1]:

L0
AIRS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)

P
x,y Ki(x, y)P

x,y Lsc(x, y)Ki(x, y)
LAIRS,i,sc,

where
1  x, y  39,
L0
AIRS,i,sc is the spatially corrected AIRS radiance in the ith channel at scan sc. We consider

only a single channel, so channel i is fixed. There are 135 scans, so 1  sc  135.
Lsc is the MODIS scene radiance in scan sc. It is known.
Ko is the average AIRS PSF (of all channels), and is 39⇥ 39. It is known.
Ki is the ith channel AIRS PSF, and is 39⇥ 39. We want to find Ki.

We assume MODIS data to be ground truth. The MODIS averaged radiance L0
MODIS,i,sc

(to compare with L0
AIRS,i,sc) must also be weighted by the average AIRS PSF:

L0
MODIS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)
.

Minimization Problem

We want to find Ki by solving the following minimization problem:

min
Ki

E(Ki) = min
Ki

����L0
AIRS,i,sc(Ki)� L0

MODIS,i,sc

����2
2
+ ↵

Z
K2

i dx.

We introduce the following notations:

Rsc =

R
Lsc(x)Ko(x)R

Ko(x)
,

Li,sc = LAIRS,i,sc,

L0
M,i,sc = L0

MODIS,i,sc

The minimization problem we are trying to solve is:

min
Ki

E(Ki),

E(Ki) =
X

sc

✓
Rsc ·

R
KidxR

Lsc ·Kidx
· Li,sc � L0

M,i,sc

◆2

+ ↵

Z
K2

i dx.

1
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Approaches Investigated

§ Different types of regularization constraints on the reconstruction:
§ Constraint on magnitude of reconstruction
§ Constraint on L2-norm of the gradient of reconstruction 

(Tikhonov regularization)
Þ No regularization was required.

§ Log barrier soft positivity constraint on the reconstruction
§ Different types of optimization algorithms:

§ Regular (L2) Gradient Descent
§ Sobolev (H1) Gradient Descent

§ Different initial conditions:
Þ The methodology is not sensitive to the choice of initial conditions.
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Latest Investigations

§ Examined full days of data for each of the three days:
§ Data collected right after the launch:

§ March 1, 2003
§ March 2, 2003

§ Data collected at the middle of the mission:
§ March 1, 2014

§ Used 235 to 239 granules for each of these days.
§ Data over oceans were considered for deriving PSFs.



Channel 776 (913.4 cm-1), Footprint 45

Using data from March 1, 2014
7

Pre-flight PSF

Reconstructed PSF

Figure 1: Pre-flight and reconstructed PSFs for channel 776, footprint 45.

for plot

f(sc) =

R
Lsc(x)Ko(x)R

Ko(x)
·

R
KidxR

Lsc ·Kidx
· Li,sc � L0

M,i,sc
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Residuals: PSF Reconstruction for Channel 776, Footprint 45 
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train \ test 2003.03.01 2003.03.02 2014.03.01
Pre-flight PSF 0.5960 0.5862 0.5251

2003.03.01 0.3091 0.3182 0.3082
2003.03.02 0.3092 0.3167 0.3071
2014.03.01 0.3158 0.3237 0.3102

How does PSF trained on one day’s data agree with the data for a different day?

Channel 776 (913.4 cm-1), Footprint 45

§ Repeatability: Examine data from consecutive days (March 1 & 2, 2003).
§ Change: Compare data collected right after the launch (2003) with data 

collected at the middle of the mission (2014).

9

Observations:
§ Data from different dates agree much better with PSFs computed from any 

other date than it does with pre-flight PSFs.
§ The 2014 data has somewhat higher residuals, suggesting some sort of 

degradation if we see similar effects over many channels.

Residuals



Pre-flight PSFs for channel 776 (913.4 cm-1)
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Footprint 1 Footprint 22 Footprint 45 Footprint 68 Footprint 90

Figure 4: Pre-flight PSFs for channel 776.

Footprint 1 Footprint 22 Footprint 45 Footprint 68 Footprint 90

Figure 5: Reconstructed PSFs for channel 776 based on over the oceans data on March 1, 2014..

7



Reconstructed PSFs for channel 776 (913.4 cm-1) based on March 1, 2014 data
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Footprint 1 Footprint 22 Footprint 45 Footprint 68 Footprint 90

Figure 4: Pre-flight PSFs for channel 776.

Footprint 1 Footprint 22 Footprint 45 Footprint 68 Footprint 90

Figure 5: Reconstructed PSFs for channel 776 based on over the oceans data on March 1, 2014..
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Channel 758 (900.0 cm-1), Footprint 45

Using data from
March 1, 2014

Pre-flight PSF

Reconstructed PSF

Figure 4: Pre-flight and reconstructed PSFs for channel 758, footprint 45.

7
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§ Examine a similar window channel, now the problem module of M-08.
§ As with the 913.4 cm-1 channel, the reconstructed PSFs are much narrower in

the X dimension.



Residuals: PSF Reconstruction for Channel 758, Footprint 45 
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§ M-08 is already known to have a bias with scene temperature, and now we see
it when we compare it to MODIS.

§ Residuals are much larger for the M-08 channel, especially at higher scene
brightness. This might suggest some stray signal that can’t be accounted for by
40x40 MODIS pixels – perhaps out-of-band or out-of-area.



How does PSF trained on one day’s data agree with the data for a different day?

Channel 758 (900.0 cm-1), Footprint 45

train \ test 2003.03.01 2003.03.02 2014.03.01
Pre-flight PSF 3.7407 3.5915 3.7845

2003.03.01 3.4131 3.2919 3.4909
2003.03.02 3.4178 3.2831 3.4861
2014.03.01 3.4368 3.3067 3.4674

14

Observations:
§ Residuals are much higher for 900.0 cm-1 compared to 913.4 cm-1 channel, but

we still improve over pre-flight PSF.
§ 2014 is again worse than 2003, supporting the idea of degradation.

Residuals
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Discussions of Results

§ Approach is successful:
§ Generates PSF with smaller residuals compared to pre-flight PSF.

§ Soft positivity constraint on reconstruction:
§ Does not prevent negative values on edges of PSF (similar to pre-flight PSF).

§ Sidelobes at ends of scan (footprints 1 and 90) – future investigation.
§ The narrowing we saw at nadir and the nodes at the ends of the

scan. Re-check the MODIS indexing.
§ M-08 A/B currently does not perform as well as channel 776.
§ The new PSFs may have time dependence.
§ The new reconstructed PSFs should be a big help to analyses using

AIRS and MODIS data together.
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Future Work

§ Reconstruct and examine PSFs for different channels.
§ Starting to investigate M-08 issues.
§ Look at shortwave channels. (Shortwave trends in the radiances).

§ Publish a better set of reconstructed PSFs.
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Backup Slides
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AIRS Radiances

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial
response:

where
Li,sc = scene radiance in channel i at scan sc
Ki = AIRS spatial response function for a given footprint (scan angle)
LAIRS,i,sc = AIRS L1B radiance in channel i at scan sc

AIRS PSF Reconstruction - Mathematical Formulation

AIRS is a low-spatial-resolution instrument, and MODIS is a high-spatial-resolution instru-
ment. A single AIRS pixel is as large as 39⇥ 39 block of pixels in MODIS.

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial response:

LAIRS,i,sc =

P
x,y Li,sc(x, y)Ki(x, y)P

x,y Ki(x, y)
,

Given radiance LAIRS,i,sc captured by AIRS instrument, we can correct it, obtaining L0
AIRS,i,sc

[1]:

L0
AIRS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)

P
x,y Ki(x, y)P

x,y Lsc(x, y)Ki(x, y)
LAIRS,i,sc,

where
1  x, y  39,
L0
AIRS,i,sc is the spatially corrected AIRS radiance in the ith channel at scan sc. We consider

only a single channel, so channel i is fixed. There are 135 scans, so 1  sc  135.
Lsc is the MODIS scene radiance in scan sc. It is known.
Ko is the average AIRS PSF (of all channels), and is 39⇥ 39. It is known.
Ki is the ith channel AIRS PSF, and is 39⇥ 39. We want to find Ki.

We assume MODIS data to be ground truth. The MODIS averaged radiance L0
MODIS,i,sc

(to compare with L0
AIRS,i,sc) must also be weighted by the average AIRS PSF:

L0
MODIS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)
.

Minimization Problem

We want to find Ki by solving the following minimization problem:

min
Ki

E(Ki) = min
Ki

����L0
AIRS,i,sc(Ki)� L0

MODIS,i,sc

����2
2
+ ↵

Z
K2

i dx.

We introduce the following notations:

Rsc =

R
Lsc(x)Ko(x)R

Ko(x)
,

Li,sc = LAIRS,i,sc,

L0
M,i,sc = L0

MODIS,i,sc

The minimization problem we are trying to solve is:

min
Ki

E(Ki),

E(Ki) =
X

sc

✓
Rsc ·

R
KidxR

Lsc ·Kidx
· Li,sc � L0

M,i,sc

◆2

+ ↵

Z
K2

i dx.

1
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AIRS Radiances

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial
response:

Given radiance LAIRS,i,sc captured by AIRS instrument, we can correct it, obtaining
L’AIRS,i,sc:

where
Lsc = MODIS scene radiance at scan sc
Ko = average AIRS spatial response function (over all channels)
L’AIRS,i,sc = spatially corrected AIRS radiance in channel i at scan sc

AIRS PSF Reconstruction - Mathematical Formulation

AIRS is a low-spatial-resolution instrument, and MODIS is a high-spatial-resolution instru-
ment. A single AIRS pixel is as large as 39⇥ 39 block of pixels in MODIS.

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial response:

LAIRS,i,sc =

P
x,y Li,sc(x, y)Ki(x, y)P

x,y Ki(x, y)
,

Given radiance LAIRS,i,sc captured by AIRS instrument, we can correct it, obtaining L0
AIRS,i,sc

[1]:

L0
AIRS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)

P
x,y Ki(x, y)P

x,y Lsc(x, y)Ki(x, y)
LAIRS,i,sc,

where
1  x, y  39,
L0
AIRS,i,sc is the spatially corrected AIRS radiance in the ith channel at scan sc. We consider

only a single channel, so channel i is fixed. There are 135 scans, so 1  sc  135.
Lsc is the MODIS scene radiance in scan sc. It is known.
Ko is the average AIRS PSF (of all channels), and is 39⇥ 39. It is known.
Ki is the ith channel AIRS PSF, and is 39⇥ 39. We want to find Ki.

We assume MODIS data to be ground truth. The MODIS averaged radiance L0
MODIS,i,sc

(to compare with L0
AIRS,i,sc) must also be weighted by the average AIRS PSF:

L0
MODIS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)
.

Minimization Problem

We want to find Ki by solving the following minimization problem:

min
Ki

E(Ki) = min
Ki

����L0
AIRS,i,sc(Ki)� L0

MODIS,i,sc

����2
2
+ ↵

Z
K2

i dx.

We introduce the following notations:

Rsc =

R
Lsc(x)Ko(x)R

Ko(x)
,

Li,sc = LAIRS,i,sc,

L0
M,i,sc = L0

MODIS,i,sc

The minimization problem we are trying to solve is:

min
Ki

E(Ki),

E(Ki) =
X

sc

✓
Rsc ·

R
KidxR

Lsc ·Kidx
· Li,sc � L0

M,i,sc

◆2

+ ↵

Z
K2

i dx.

1

AIRS PSF Reconstruction - Mathematical Formulation

AIRS is a low-spatial-resolution instrument, and MODIS is a high-spatial-resolution instru-
ment. A single AIRS pixel is as large as 39⇥ 39 block of pixels in MODIS.

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial response:

LAIRS,i,sc =

P
x,y Li,sc(x, y)Ki(x, y)P

x,y Ki(x, y)
,

Given radiance LAIRS,i,sc captured by AIRS instrument, we can correct it, obtaining L0
AIRS,i,sc

[1]:

L0
AIRS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)

P
x,y Ki(x, y)P

x,y Lsc(x, y)Ki(x, y)
LAIRS,i,sc,

where
1  x, y  39,
L0
AIRS,i,sc is the spatially corrected AIRS radiance in the ith channel at scan sc. We consider

only a single channel, so channel i is fixed. There are 135 scans, so 1  sc  135.
Lsc is the MODIS scene radiance in scan sc. It is known.
Ko is the average AIRS PSF (of all channels), and is 39⇥ 39. It is known.
Ki is the ith channel AIRS PSF, and is 39⇥ 39. We want to find Ki.

We assume MODIS data to be ground truth. The MODIS averaged radiance L0
MODIS,i,sc

(to compare with L0
AIRS,i,sc) must also be weighted by the average AIRS PSF:

L0
MODIS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)
.

Minimization Problem

We want to find Ki by solving the following minimization problem:

min
Ki

E(Ki) = min
Ki

����L0
AIRS,i,sc(Ki)� L0

MODIS,i,sc

����2
2
+ ↵

Z
K2

i dx.

We introduce the following notations:

Rsc =

R
Lsc(x)Ko(x)R

Ko(x)
,

Li,sc = LAIRS,i,sc,

L0
M,i,sc = L0

MODIS,i,sc

The minimization problem we are trying to solve is:

min
Ki

E(Ki),

E(Ki) =
X

sc

✓
Rsc ·

R
KidxR

Lsc ·Kidx
· Li,sc � L0

M,i,sc

◆2

+ ↵

Z
K2

i dx.

1
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MODIS Radiances

The MODIS averaged radiance L’MODIS,i,sc (to compare with L’AIRS,i,sc) must also be
weighted by the average AIRS spatial response function:

AIRS PSF Reconstruction - Mathematical Formulation

AIRS is a low-spatial-resolution instrument, and MODIS is a high-spatial-resolution instru-
ment. A single AIRS pixel is as large as 39⇥ 39 block of pixels in MODIS.

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial response:

LAIRS,i,sc =

P
x,y Li,sc(x, y)Ki(x, y)P

x,y Ki(x, y)
,

Given radiance LAIRS,i,sc captured by AIRS instrument, we can correct it, obtaining L0
AIRS,i,sc

[1]:

L0
AIRS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)

P
x,y Ki(x, y)P

x,y Lsc(x, y)Ki(x, y)
LAIRS,i,sc,

where
1  x, y  39,
L0
AIRS,i,sc is the spatially corrected AIRS radiance in the ith channel at scan sc. We consider

only a single channel, so channel i is fixed. There are 135 scans, so 1  sc  135.
Lsc is the MODIS scene radiance in scan sc. It is known.
Ko is the average AIRS PSF (of all channels), and is 39⇥ 39. It is known.
Ki is the ith channel AIRS PSF, and is 39⇥ 39. We want to find Ki.

We assume MODIS data to be ground truth. The MODIS averaged radiance L0
MODIS,i,sc

(to compare with L0
AIRS,i,sc) must also be weighted by the average AIRS PSF:

L0
MODIS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)
.

Minimization Problem

We want to find Ki by solving the following minimization problem:

min
Ki

E(Ki) = min
Ki

����L0
AIRS,i,sc(Ki)� L0

MODIS,i,sc

����2
2
+ ↵

Z
K2

i dx.

We introduce the following notations:

Rsc =

R
Lsc(x)Ko(x)R

Ko(x)
,

Li,sc = LAIRS,i,sc,

L0
M,i,sc = L0

MODIS,i,sc

The minimization problem we are trying to solve is:

min
Ki

E(Ki),

E(Ki) =
X

sc

✓
Rsc ·

R
KidxR

Lsc ·Kidx
· Li,sc � L0

M,i,sc

◆2

+ ↵

Z
K2

i dx.

1
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Minimization Problem

We want to find Ki by solving the following minimization problem:

We know that the point spread function Ki should be non-negative.
Þ Introduce log barrier soft positivity constraint on Ki. The new

minimization problem is:

AIRS PSF Reconstruction - Mathematical Formulation

AIRS is a low-spatial-resolution instrument, and MODIS is a high-spatial-resolution instru-
ment. A single AIRS pixel is as large as 39⇥ 39 block of pixels in MODIS.

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial response:

LAIRS,i,sc =

P
x,y Li,sc(x, y)Ki(x, y)P

x,y Ki(x, y)
,

Given radiance LAIRS,i,sc captured by AIRS instrument, we can correct it, obtaining L0
AIRS,i,sc

[1]:

L0
AIRS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)

P
x,y Ki(x, y)P

x,y Lsc(x, y)Ki(x, y)
LAIRS,i,sc,

where
1  x, y  39,
L0
AIRS,i,sc is the spatially corrected AIRS radiance in the ith channel at scan sc. We consider

only a single channel, so channel i is fixed. There are 135 scans, so 1  sc  135.
Lsc is the MODIS scene radiance in scan sc. It is known.
Ko is the average AIRS PSF (of all channels), and is 39⇥ 39. It is known.
Ki is the ith channel AIRS PSF, and is 39⇥ 39. We want to find Ki.

We assume MODIS data to be ground truth. The MODIS averaged radiance L0
MODIS,i,sc

(to compare with L0
AIRS,i,sc) must also be weighted by the average AIRS PSF:

L0
MODIS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)
.

Minimization Problem

We want to find Ki by solving the following minimization problem:

min
Ki

E(Ki) = min
Ki

����L0
AIRS,i,sc(Ki)� L0

MODIS,i,sc

����2
2
+ ↵

Z
K2

i dx.

We introduce the following notations:

Rsc =

R
Lsc(x)Ko(x)R

Ko(x)
,

Li,sc = LAIRS,i,sc,

L0
M,i,sc = L0

MODIS,i,sc

The minimization problem we are trying to solve is:

min
Ki

E(Ki),

E(Ki) =
X

sc

✓
Rsc ·

R
KidxR

Lsc ·Kidx
· Li,sc � L0

M,i,sc

◆2

+ ↵

Z
K2

i dx.

1

Sobolev (H1) Gradient Descent

dKi

dt
= �@H1E(Ki) = �(I �4)�1@L2E(Ki),

(I �4)
dKi

dt
= �@L2E(Ki),

Gn = �@L2E(Ki) = �
X

sc


Rsc

R
KiR

LscKi
· Li,sc � L0

M,i,sc

�
·RscLi,sc ·

R
LscKi � (

R
Ki)Lsc�R

Lsc ·Ki

�2 ,

Denote w = Kn+1�Kn

dt , then

wl+1
i,j �

(
wl

i+1,j � 2wl+1
i,j + wl

i�1,j

4x2
+

wl
i,j+1 � 2wl+1

i,j + wl
i,j�1

4y2

)
= Gn,

or

wl+1 =
1

5
(Gn + wi+1 + wi�1 + wj+1 + wj�1) .

Update Kn+1 = Kn +4t · w.

Logarithmic Barrier Constraint

The minimization problem we are trying to solve is:

min
Ki

E(Ki) = min
Ki

����L0
AIRS,i,sc(Ki)� L0

MODIS,i,sc

����2
2
� �

Z
log(Ki)dx.

min
Ki

E(Ki),

E(Ki) =
X

sc

✓
Rsc ·

R
KidxR

Lsc ·Kidx
· Li,sc � L0

M,i,sc

◆2

� �

Z
log(Ki)dx.

Euler-Lagrange Equation

Ki must solve:

X

sc


Rsc

R
KiR

LscKi
· Li,sc � L0

M,i,sc

�
·RscLi,sc ·

R
LscKi � (

R
Ki)Lsc�R

Lsc ·Ki

�2 � �
1

Ki
= 0,

for each x.

Gradient Descent

We parametrize the descent direction by an artificial time t and solve the Euler-Lagrange
equation in Ki(t) using the gradient descent method:

dKi

dt
= �

X

sc


Rsc

R
KiR

LscKi
· Li,sc � L0

M,i,sc

�
·RscLi,sc ·

R
LscKi � (

R
Ki)Lsc�R

Lsc ·Ki

�2 + �
1

Ki
.

3
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Minimization Problem

We want to find Ki by solving the following minimization problem:

We know that the point spread function Ki should be non-negative.
Þ Introduce log barrier soft positivity constraint on Ki. The new

minimization problem is:

or

AIRS PSF Reconstruction - Mathematical Formulation

AIRS is a low-spatial-resolution instrument, and MODIS is a high-spatial-resolution instru-
ment. A single AIRS pixel is as large as 39⇥ 39 block of pixels in MODIS.

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial response:

LAIRS,i,sc =

P
x,y Li,sc(x, y)Ki(x, y)P

x,y Ki(x, y)
,

Given radiance LAIRS,i,sc captured by AIRS instrument, we can correct it, obtaining L0
AIRS,i,sc

[1]:

L0
AIRS,i,sc =

P
x,y Lsc(x, y)Ko(x, y)P

x,y Ko(x, y)

P
x,y Ki(x, y)P

x,y Lsc(x, y)Ki(x, y)
LAIRS,i,sc,

where
1  x, y  39,
L0
AIRS,i,sc is the spatially corrected AIRS radiance in the ith channel at scan sc. We consider

only a single channel, so channel i is fixed. There are 135 scans, so 1  sc  135.
Lsc is the MODIS scene radiance in scan sc. It is known.
Ko is the average AIRS PSF (of all channels), and is 39⇥ 39. It is known.
Ki is the ith channel AIRS PSF, and is 39⇥ 39. We want to find Ki.

We assume MODIS data to be ground truth. The MODIS averaged radiance L0
MODIS,i,sc

(to compare with L0
AIRS,i,sc) must also be weighted by the average AIRS PSF:
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Sobolev (H1) Gradient Descent
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Logarithmic Barrier Constraint
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Euler-Lagrange Equation
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Euler-Lagrange Equation

Minimization problem:

Þ Ki must solve the following Euler-Lagrange equation:

Sobolev (H1) Gradient Descent
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Sobolev Gradient Descent

Advance the Euler-Lagrange equation using Sobolev Gradient Descent:

which can be re-written as:

Gradient Descent

We parametrize the descent direction by an artificial time t and solve the Euler-Lagrange
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Sobolev (H1) Gradient Descent with Logarithmic Barrier Constraint
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