AIRS Point Spread Function Reconstruction using AIRS and MODIS Data

Igor Yanovsky

Jet Propulsion Laboratory, California Institute of Technology Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles

Thomas Pagano, Evan Manning, Steven Broberg, Hartmut Aumann

Jet Propulsion Laboratory, California Institute of Technology

Luminita Vese

Department of Mathematics, University of California, Los Angeles

NASA Sounder Science Team Meeting October 2 - 16, 2020

Motivation and Approach

- The purpose of this effort is to use MODIS data to refine our knowledge of post-launch AIRS point spread functions (PSFs), including suspected changes over the mission.
- Deriving mathematical optimization formulation for reconstruction of AIRS spatial response functions from AIRS and MODIS data.

AIRS Data

AIRS spatial response is different for each of 2378 channels and 90

scan angles.

Channels range from 3.7 μm to 15.4 μm

- Spatial resolution is 13.5 km
- Granule is 90 scan angles by 135 scans
 - 240 granules per day
- Match AIRS and MODIS radiances.
- Resample MODIS radiances onto AIRS PSF grid
 - AIRS PSFs are 39x39 pixels, 0.04 degrees / pixel
 - Each AIRS footprint corresponds to 40x40 MODIS pixels
 - MODIS channel 31 used with 1 km resolution

AIRS granule Channel 776 (913.4 cm⁻¹), window channel

Minimization Problem

We want to reconstruct a point spread function K_i by solving the following minimization problem:

$$\min_{K_i} E(K_i) = \min_{K_i} \left| \left| L'_{AIRS,i,sc}(K_i) - L'_{MODIS,i,sc} \right| \right|_2^2$$

Approaches Investigated

- Different types of regularization constraints on the reconstruction:
 - Constraint on magnitude of reconstruction
 - Constraint on L^2 -norm of the gradient of reconstruction (Tikhonov regularization)
 - ⇒ No regularization was required.
- Log barrier soft positivity constraint on the reconstruction
- Different types of optimization algorithms:
 - Regular (L^2) Gradient Descent
 - Sobolev (H¹) Gradient Descent
- Different initial conditions:
 - ⇒ The methodology is not sensitive to the choice of initial conditions.

Latest Investigations

- Examined full days of data for each of the three days:
 - Data collected right after the launch:
 - March 1, 2003
 - March 2, 2003
 - Data collected at the middle of the mission:
 - March 1, 2014
- Used 235 to 239 granules for each of these days.
- Data over oceans were considered for deriving PSFs.

Channel 776 (913.4 cm⁻¹), Footprint 45

Pre-flight PSF

Reconstructed PSF

Using data from March 1, 2014

Residuals: PSF Reconstruction for Channel 776, Footprint 45

How does PSF trained on one day's data agree with the data for a different day?

- Repeatability: Examine data from consecutive days (March 1 & 2, 2003).
- Change: Compare data collected right after the launch (2003) with data collected at the middle of the mission (2014).

Channel 776 (913.4 cm⁻¹), Footprint 45

	: ~		
Res	ш	ua	15

train \ test	2003.03.01	2003.03.02	2014.03.01
Pre-flight PSF	0.5960	0.5862	0.5251
2003.03.01	0.3091	0.3182	0.3082
2003.03.02	0.3092	0.3167	0.3071
2014.03.01	0.3158	0.3237	0.3102

Observations:

- Data from different dates agree much better with PSFs computed from any other date than it does with pre-flight PSFs.
- The 2014 data has somewhat higher residuals, suggesting some sort of degradation if we see similar effects over many channels.

Pre-flight PSFs for channel 776 (913.4 cm⁻¹)

Reconstructed PSFs for channel 776 (913.4 cm⁻¹) based on March 1, 2014 data

Channel 758 (900.0 cm⁻¹), Footprint 45

- Examine a similar window channel, now the problem module of M-08.
- As with the 913.4 cm⁻¹ channel, the reconstructed PSFs are much narrower in the X dimension.

Using data from March 1, 2014

Residuals: PSF Reconstruction for Channel 758, Footprint 45

- M-08 is already known to have a bias with scene temperature, and now we see it when we compare it to MODIS.
- Residuals are much larger for the M-08 channel, especially at higher scene brightness. This might suggest some stray signal that can't be accounted for by 40x40 MODIS pixels perhaps out-of-band or out-of-area.

How does PSF trained on one day's data agree with the data for a different day?

Channel 758 (900.0 cm⁻¹), Footprint 45

Residuals

train \ test	2003.03.01	2003.03.02	2014.03.01
Pre-flight PSF	3.7407	3.5915	3.7845
2003.03.01	3.4131	3.2919	3.4909
2003.03.02	3.4178	3.2831	3.4861
2014.03.01	3.4368	3.3067	3.4674

Observations:

- Residuals are much higher for 900.0 cm⁻¹ compared to 913.4 cm⁻¹ channel, but we still improve over pre-flight PSF.
- 2014 is again worse than 2003, supporting the idea of degradation.

Discussions of Results

- Approach is successful:
 - Generates PSF with smaller residuals compared to pre-flight PSF.
- Soft positivity constraint on reconstruction:
 - Does not prevent negative values on edges of PSF (similar to pre-flight PSF).
- Sidelobes at ends of scan (footprints 1 and 90) future investigation.
- The narrowing we saw at nadir and the nodes at the ends of the scan. Re-check the MODIS indexing.
- M-08 A/B currently does not perform as well as channel 776.
- The new PSFs may have time dependence.
- The new reconstructed PSFs should be a big help to analyses using AIRS and MODIS data together.

Future Work

- Reconstruct and examine PSFs for different channels.
 - Starting to investigate M-08 issues.
 - Look at shortwave channels. (Shortwave trends in the radiances).
- Publish a better set of reconstructed PSFs.

Backup Slides

AIRS Radiances

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial response:

$$L_{AIRS,i,sc} = \frac{\sum_{x,y} L_{i,sc}(x,y) K_i(x,y)}{\sum_{x,y} K_i(x,y)},$$

where

 $L_{i,sc}$ = scene radiance in channel i at scan sc

 K_i = AIRS spatial response function for a given footprint (scan angle)

 $L_{AIRS,i,sc}$ = AIRS L1B radiance in channel *i* at scan *sc*

AIRS Radiances

The spatially averaged radiance from AIRS depends on the scene and AIRS spatial response:

$$L_{AIRS,i,sc} = \frac{\sum_{x,y} L_{i,sc}(x,y) K_i(x,y)}{\sum_{x,y} K_i(x,y)},$$

Given radiance $L_{AIRS,i,sc}$ captured by AIRS instrument, we can correct it, obtaining $L'_{AIRS,i,sc}$:

$$L'_{AIRS,i,sc} = \frac{\sum_{x,y} L_{sc}(x,y) K_o(x,y)}{\sum_{x,y} K_o(x,y)} \frac{\sum_{x,y} K_i(x,y)}{\sum_{x,y} L_{sc}(x,y) K_i(x,y)} L_{AIRS,i,sc},$$

where

 L_{sc} = MODIS scene radiance at scan sc

 K_o = average AIRS spatial response function (over all channels)

 $L'_{AIRS,i,sc}$ = spatially corrected AIRS radiance in channel i at scan sc

MODIS Radiances

The MODIS averaged radiance $L'_{MODIS,i,sc}$ (to compare with $L'_{AIRS,i,sc}$) must also be weighted by the average AIRS spatial response function:

$$L'_{MODIS,i,sc} = \frac{\sum_{x,y} L_{sc}(x,y) K_o(x,y)}{\sum_{x,y} K_o(x,y)}.$$

Minimization Problem

We want to find K_i by solving the following minimization problem:

$$\min_{K_i} E(K_i) = \min_{K_i} \left| \left| L'_{AIRS,i,sc}(K_i) - L'_{MODIS,i,sc} \right| \right|_2^2$$

We know that the point spread function K_i should be non-negative.

 \Rightarrow Introduce *log barrier* soft positivity constraint on K_i . The new minimization problem is:

$$\min_{K_i} E(K_i) = \min_{K_i} ||L'_{AIRS,i,sc}(K_i) - L'_{MODIS,i,sc}||_2^2 - \lambda \int \log(K_i) dx$$

Minimization Problem

We want to find K_i by solving the following minimization problem:

$$\min_{K_i} E(K_i) = \min_{K_i} \left| \left| L'_{AIRS,i,sc}(K_i) - L'_{MODIS,i,sc} \right| \right|_2^2$$

We know that the point spread function K_i should be non-negative.

 \Rightarrow Introduce *log barrier* soft positivity constraint on K_i . The new minimization problem is:

$$\min_{K_i} E(K_i) = \min_{K_i} ||L'_{AIRS,i,sc}(K_i) - L'_{MODIS,i,sc}||_2^2 - \lambda \int \log(K_i) dx$$

or

$$\min_{K_i} E(K_i) = \min_{K_i} \sum_{sc} \left(\frac{\int L_{sc}(x) K_o(x)}{\int K_o(x)} \cdot \frac{\int K_i dx}{\int L_{sc} \cdot K_i dx} \cdot L_{AIRS,i,sc} - L'_{MODIS,i,sc} \right)^2 - \lambda \int \log(K_i) dx.$$

Euler-Lagrange Equation

Minimization problem:

$$\min_{K_i} E(K_i) = \min_{K_i} \sum_{sc} \left(\frac{\int L_{sc}(x) K_o(x)}{\int K_o(x)} \cdot \frac{\int K_i dx}{\int L_{sc} \cdot K_i dx} \cdot L_{AIRS,i,sc} - L'_{MODIS,i,sc} \right)^2 - \lambda \int \log(K_i) dx.$$

 $\Rightarrow K_i$ must solve the following Euler-Lagrange equation:

$$\partial_{L^{2}}E(K_{i}) = \sum_{sc} \left(\left[\frac{\int L_{sc}(x)K_{o}(x)}{\int K_{o}(x)} \cdot \frac{\int K_{i}}{\int L_{sc}K_{i}} \cdot L_{AIRS,i,sc} - L'_{MODIS,i,sc} \right] \times \frac{\int L_{sc}(x)K_{o}(x)}{\int K_{o}(x)} \cdot L_{AIRS,i,sc} \cdot \frac{\int L_{sc}K_{i} - (\int K_{i})L_{sc}}{\left(\int L_{sc} \cdot K_{i} \right)^{2}} \right) - \lambda \frac{1}{K_{i}} = 0.$$

Sobolev Gradient Descent

Advance the Euler-Lagrange equation using Sobolev Gradient Descent:

$$\frac{dK_i}{dt} = -\partial_{H^1} E(K_i) = -(I - \triangle)^{-1} \partial_{L^2} E(K_i),$$

which can be re-written as:

$$(I - \triangle)\frac{dK_i}{dt} = -\partial_{L^2}E(K_i)$$

Acknowledgements

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Thank You!