AIRS/CrIS Radiometric Stability Improvements Needed for the CHIRP Climate Data Record

AIRS Virtual Science Team Meeting

L. Larrabee Strow^{1,2}, Sergio De-Souza Machado^{1,2}, Chris Hepplewhite², and Howard Motteler²

October 5, 2020

¹ UMBC Physics Dept.

²UMBC JCET

Introduction (For all three talks)

- AIRS and CrIS exhibit excellent stability (stable blackbodies) that enable construction of long-term climate time-series and trends from 2002 through 2040s?
- Need continuity using different instruments (AIRS, CrIS, IASI)

Combined Hyperspectral Infrared Radiance Product (CHIRP)

- Provides common spectral instrument line shape (single RTA!)
- Inter-instrument radiometric offsets removed, for now use SNPP-CrIS as the standard

Further Requirement: Instrument stability

- We believe the AIRS blackbody is extremely stable based on recent work
- However, many AIRS channels exhibit non-physical changes that we can quantify
 - Jumps (mostly due to AIRS events)
 - Trends (root cause may be related slight changes in viewing angles)

Calibration Task(s) Needed for a Successful CHIRP

- Fix parent radiometric drifts when possible (THIS TALK)
- · Otherwise, document in detail

Quantification of AIRS Trends

Our approach detailed in:

Strow, L., & DeSouza-Machado, S. (2020). Establishment of AIRS climate-level radiometric stability
using radiance anomaly retrievals of minor gases and sea surface temperatureAtmospheric
Measurement Techniques, 13(9), 4619-4644, doi: 10.5194/amt-13-4619-2020.

Main Steps

- Form radiance anomalies, 16-day averages of zonally gridded clear ocean scenes
- Use ERA to generate jacobians (kernels) of anomalies
- Retrieve all standard geophysical variables using "OE", but minor gases dominate!
- Use the excellent ESRL CO2, N2O, and CH4 in-situ climate records as "standards"
- Also use ERA-SST (GHRSST) and OISST as "standard"
- · Look for drifts, steps in either the retrieved variables, or in the fit residuals
- Most radiometric "errors" show up as geophysical variable errors
- Shortwave ignored since drifts are so large, unable to get convergence

Next Step

- These results should now be used to fix the AIRS L1c record
- Can that be done!
- Needed for our CHIRP products and for Level-2 CHIRP retrievals

OE Anomaly Residual Trends (Descending Node ONLY)

- The OE anomaly residuals should have zero trend if successful
- We ignored shortwave, but here show the Obs-Fit where Fit uses the longwave, midwave fit parameters

Retrieved Anomalies

- CO₂ channels stable, minor offset in Nov. 2003
- CH₄ channels show 2003, 2010 offsets (2003 maybe temporary)
- (AIRS ERA) SST show offset in 2016 due to AIRS event (cooler restart)
- N₂O (not shown) has two offsets, removal removes any trend!
- Next: Turn these geophysical offsets into AIRS channel corrections

AIRS Stability Summary

From AMT paper

```
CO_2 -0.023 ± 0.009 K/decade
```

 N_2O -0.141 ± 0.012 K/decade (-0.022 ± 0.009 if fix jumps)

CH₄ $-0.107 \pm 0.024 \text{ K/decade (jumps in 2003, 2010)}$

SST ERA (GHRSST) 0.022 ± 0.024 K/decade

SST OISST 0.034 ± 0.021 K/decade (shifted in Sept. 2016, as shown)

N2O drift at nominal climate change level

- These results suggest a very stable AIRS blackbody.
- Detailed examination of residual suggests A/B detector drifts (known to AIRS Cal Team)
- Shortwave drifting (descending node)
- Excellent starting point: but we have the information to provide improvements that should make AIRS a "climate standard".
- Selling AIRS (CHIRP) to the climate community will take work

Next Task: Remove temporal offsets and trends in the AIRS L1c record, using as much physics as possible.

Sample Study: AIRS DCC Trends

- DCC: deep convective clouds
- Aumann noticed drifts in DCCs in the shortwave relatively early in the mission
- Pagano has modeled them assuming the AIRS FOV has changed (broadened) over time

This Work

- Quick look to see if DCC trends can explain shortwave trends in the (relatively warm) anomaly spectra
- Cold shortwave channels very sensitive to changes in AIRS space view (SV) counts
- Work by Overroye has shown some time-dependent variabiliy in how AIRS views the SV.

AIRS Radiometric Drifts via DCC's

- Previous work using comparisons of clear-ocean scene trends show that the AIRS shortwave band is drifting hot, ~6 mK/year over 16 years.
- We could not fit the clear-ocean scene anomalies if the shortwave was included. If excluded resulting SST trends were in agreement with OISST, etc. to 2 mK/year.
- Since AIRS L2 uses shortwave for surface T, we content this leads to inaccurate surface T trends using AIRS (reported in the Wash. Post!).
- Large BT trend observed in DCC's (0.45 K/year) suggests a cold scene (space view) problem.
- Can DCC results be (a) understood, (b) appear "reasonable" with quantifiable uncertaintes, and the hard one (c) be transferred to warmer scenes to remove the AIRS shortwave drifts.

DCC Observations

Time Dependence of Trends

15-Year DCC Trend

- DCC's defined here by $BT(960 \text{ cm}^{-1}) < 215 \text{K}$
- DCC's often used for calibration since extremely stable
- Trends are NOT seen in IASI shortwave
- A/B trends (longwave) and AIRS frequency shifts have similar time-dependencies!
- Shortwave sensitive to space view (SV) drifts.
- Suspect focal plane/optics shifts that change location of SV's

Using DCC Emission to Determine Calibration Drifts

- · Simplified to ignore non-linearity and polarization
- Written differently than in ATBD, show Space View (SV) explicitely

$$R = \frac{EV - SV}{OBC - SV} R_{OBC}$$

- R is calibrated radiance
- EV/SV/OBC are the earth/space/blackbody counts
- R_{OBC} is the computed OBC (blackbody) radiance

Sensitivity of R to SV

Solve for SV using DCC Spectra

$$\frac{\partial R}{\partial SV} = \frac{1}{OBC - SV} (R - R_{OBC})$$

$$\delta SV = \frac{OBC - SV}{R_{DCC} - R_{OBC}} \delta R_{DCC}$$

Approach

- Use DCC trends for δ R, solve for δ SV (\equiv SV drift/year)
- Compute δ R trends for various scene types (R = DCC, clear, etc.)
- · Convert to BT trends
- Ignore regions where emission exists above DCC's, ie stratospheric emission that could be varying in time
- Lien #1: used a single, randomly selected AIRS L1a scene to estimate (OBC SV)
- Lien #2: DCC drift maximum near equator, drops 30% by ± 30° latitude (orbit phase or T. Pagano's FOV idea?)

SV Trend Results

Sample Set of AIRS L1a Counts

δ SV BT Trend for SV = 265K

δ BT for 1% SV drift for BT = DCC, 300K

- AIRS scene produces window BT ~275K
- Note high A/B variability in SV counts!
- Setting SV = 265K is just to illustrate magitude of SV drift
- SV drifts small but DCC's allow quantification
- Key conclusion: this approach predicts scene dependence

Do the DCC SV Drifts Predict All-Sky Trends?

- Blue is 17-year all-sky AIRS BT trend (black line denotes 1231 cm⁻¹ channel)
 - CO₂, CH₄, N₂O, and O₃ exhibit greenhouse effect
 - H2O also shows greenhouse effect
- Red are shifts predicted by SV drift. Nicely reproduces shortwave "false" extra warming
- Nominal agreement for detector side A/B ringing in window regions
- LIEN: SV trend likely orbit phase dependent, just like AIRS frequencies!

DCC Summary

- Results only apply to tropical descending node
- Recent work by UMBC suggests that ascending node shortwave drifts are small
- Past work by Aumman suggest that AIRS shortwave is stable at S. Pole (Dome Concordia) relative to IASI
- This all suggests a orbit phase component in SV counts, much more work needed to confirm!
- If drift is descending only, that still lowers Susskind et. al. surface temperataure results to in-between GISS and HADCRUT instead of being higher than all other climatologies

CrIS Stability

- We have done some preliminary work on SNPP CrIS stability
- Using same approach, OE retrievals from radiance anomalies
- CrlS has the "feature" that we can inter-compare among the 9 focal plane detectors!
- Results summarized below:
 - Preliminary!!
 - We see "events"
 - We see differential changes among detectors during these events (non-linearity)
- · AGAIN we are just starting this work

CrIS CO₂ Anomaly Retrieval

CrIS OE Fit Residuals (Obs - Fit BT Anomaly)

Mean Residual (over time)

Residual Time Trends

- Short wave "drifting" up??
- But AIRS was like this, another space view scene issue?
- Problems fitting extreme longwave CO₂, non-linearity issue?

698.75 cm⁻¹ CrIS-AIRS SNOs: Tropics by FOV

FOV 9

- Associated with non-linearity?
- Why ~Feb. 20, 2014?
- Feb. 20, 2014 start of MX8.1
- UMBC uses fixed ILS and a2's but not other vars
- August restart changed!

1493.7 cm⁻¹ CrIS-AIRS SNOs (Suggests change in non-linearity)

Tropics FOV 7

Polar

Polar FOV 7

Conclusions

- We have very stable instruments in orbit, but there are known stability liens.
- AIRS/CrIS/IASI promise proposed IR CLARREO level science (maybe even better if sensor overlap continues).
- We can rigorously detect instrument shifts/drifts using radiance anomaly time series
- Fixing these drifts should be a high priority, since they directly impact the uncertainty in AIRS/CrIS derived trends
- This is a non-trivial task!