Cloud properties from IR Sounders (AIRS – IASI): Synergies & Climate applications

Claudia Stubenrauch

Laboratoire de Météorologie Dynamique / IPSL, France

with contributions of A. Feofilov, S. Protopapadaki, G. Caria & GEWEX CA team

NASA Sounder Science Team meeting, 5 Oct 2020

Outline

- Cloud properties from satellite observations (GEWEX Cloud Assessment)
 - CIRS retrieval : clouds from IR Sounders
 - diurnal cycle of UT clouds (AIRS IASI synergy)
 - UT cloud system approach:
 - -> anvil properties convection environment
 - vertical structure of UT cloud systems & environment (AIRS-CALIPSO-CloudSat synergy & machine learning) -> atmospheric radiative heating effects

conclusions & outlook

Stubenrauch, C. J., Caria, G., Protopapadaki, S. E., and Hemmer, F.: **3D Radiative Heating of Tropical Upper Tropospheric Cloud Systems derived from Synergistic A-Train Observations and Machine Learning**, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2020-613, in review, 2020

Protopapadaki, E.-S., Stubenrauch, C. J., and Feofilov, A. G., Upper Tropospheric cloud Systems derived from IR Sounders: Properties of Cirrus Anvils in the Tropics, Atmosph. Chem. Phys., 17, 3845-3859, doi:10.5194/acp-17-3845-2017, 2017

Feofilov, A. G. and Stubenrauch, C. J., Diurnal variation of high-level clouds from the synergy of AIRS and IASI space-borne infrared sounders, Atmos. Chem. Phys., 19, 13957-13972, doi:10.5194/acp-19-13957-2019, 2019

Stubenrauch, C. J., Feofilov, A. G., Protopapadaki, E.-S., & Armante, R.: Cloud climatologies from the InfraRed Sounders AIRS and IASI: Strengths and Applications, Atmosph. Chem. Phys., 17, 13625-13644, doi:10.5194/acp-17-13625-2017, 2017

Stubenrauch, C. J., & 21 co-authors: Assessment of Global Cloud Datasets from Satellites: Project and Database initiated by the GEWEX Radiation Panel, Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-12-00117.1, 2013

Cloud properties from space

active lidar – radar : vertical cloud structure passive IR-NIR-VIS Radiometers, IR Sounders, VIS-SWIR Radiometers exploit different parts of EM spectrum: How does this affect climatic averages & distributions?

Stubenrauch et al., WCRP report 2012, BAMS 2013

http://climserv.ipsl.polytechnique.fr/gewexca Data archive until 2009

Update of database in 2020: https://gewexca.aeris-data.fr/

 Passive remote sensing: only information on uppermost cloud layers
 'radiative' cloud height (middle or middle between top & height at which cloud reaches opacity)
 perception of cloud scenes depends on instrument (IR – VIS spectrum)
 => cloud property accuracy scene dependent : most difficult scenes: thin Ci overlying low clouds, low contrast with surface thin Ci, low cld, polar regions

Cloud Assessment update: rel. CA stratified by height

results similar to GEWEX Cloud Assessment:

CA: 0.68 ± 0.03

40% are high clouds & 40% single-layer low-level clouds

sensitivity to thin cirrus decreases from lidar – IR Sounders – IR spectral difference –VIS only

VIS only : sensitive to cirrus with COD>2 (MISR)

-> CALR also includes clouds obscured by cirrus with COD < 2

[CAM+CAL](MISR) = [CAM+CAL](CALIPSO-ST_COLUMN)

Cloud Pressure histograms

- Only CALIPSO provides cloud top height -> p_{cld}(CALIPSO) < p_{cld}(passive)
- Bimodal p_{cld} distributions, esp. over tropical ocean; less low clouds over land
- rel. good agreement AIRS / IASI & PATMOSX & CALIPSO
- ISCCP misses high clouds; low clouds higher than those of other datasets
- New datasets (ESACCI & AVHRR-CLARA) need still some refinement (misidentification of high clouds & of low clouds , respectively, as midlevel clouds)

Cloud retrieval from IR Sounders (CIRS) Stubenrauch et al., J. Clim. 1999, 2006; ACP 2010, ACP 2017

HIRS >1979 : 7:30/ 1:30 AM/PM

AIRS, CrIS ≥2002 / ≥ 2012 : 1:30 AM/PM IASI (1,2,3), IASI-NG

≥2006 / ≥ 2012 / ≥ 2020 : 9:30 AM/PM

>good IR spectral resolution -> sensitive to cirrus

similar performance day & night, COD_{vis} > 0.2, also above low clouds

- ε_{cld} , p_{cld} from min χ^2 (8 CO₂ channels) + T_{cld} , z_{cld} + uncertainties
- a posteriori cloud detection (spectral ε_{cld} coherence); $\varepsilon_{cld} > 0.1$
- evaluation for AIRS with CALIPSO-CloudSat
- AIRS / IASI common ancillary data (ERA-Interim)
- CIRS can be easily adapted to any IR Sounder

effect of ancillary data on cloud properties:

small effect between NASA AIRS and ERA-Interim CAL is more affected than CAH (linked to T_{surf})

CA	-AIRS-CIRS	AIRS-CIRS(ERA)
CAH	-AIRS-CIRS	AIRS-CIRS(ERA)
CAL	AIRS-CIRS	AIRS-CIRS(ERA)
	IASI-CIRS(ERA)	AIRS-LMD
2	IASI-CIRS(ERA)	AIRS-LMD
	IASI-CIRS(ERA)	AIRS-LMD
		-

Diurnal cycle of UT clouds: good temporal resolution vs sensitivity / day-night coherence

NH midlatitudes land during summer

Feofilov & Stubenrauch ACP 2019

► IR sounders ≈ CATS Noël et al. ACP 2018

ISCCP is driven towards the diurnal cycle of optically thicker clouds
 For process studies consider diurnal cycle of different cloud types

Diurnal cycle of UT cloud types in tropics

Use of same ancillary data necessary to get coherent diurnal cycle -> ERA-Interim

Database of mean amount, diurnal amplitude & peak time per cloud type, 1° x 1°, monthly, 2008-2015

Continents: deep convection max in early evening anvils (Cirrus) continue development during night thin Cirrus different regimes, partly from dissipation of convective systems
Asian maritime: convection around noon / cirrus evening / thin Cirrus night

UT clouds cover 30% of the Earth

& 40% of tropics

Snapshot AIRS-CIRS UT clouds: dark -> light blue, according to decreasing ε_{cld}

UT clouds play a vital role in climate system by modulating Earth's energy budget & UT heat transport

They often form **mesoscale systems** extending over several hundred kilometres, as outflow of convective / frontal systems or in situ by large-scale forcing

Climate warming : change in convective intensity & coverage, height of convective systems & emissivity structure of the anvils ? This then affects the heating gradients!

Goals: - understand relation between convection, cirrus anvils & radiative heating - provide obs. based metrics to evaluate detrainment processes in models

From cloud retrieval to cloud systems

clouds are extended objects, driven by dynamics -> organized systems

Method: 1) group adjacent grid boxes with high clouds of similar height (p_{cld})

2) use ε_{cld} to distinguish convective core, thick cirrus, thin cirrus (only IR sounder)

10

30N-30S: UT cloud systems cover 25%, those without convective core 5% 50% of these originate from convection (Luo & Rossow 2004, Riihimaki et al. 2012)

link anvil structure to convective depth

Protopapadaki et al. ACP 2017

Why ?H1: UT environmental predisposition (at higher altitude larger RH, T stratification)H2: UT humidification from cirrus outflowDoes the relationship change in a warmer climate ?GCM

Goal: link anvil heating rates to convective depth via a complete 3-D description of UT cloud systems & their environment

start from retrieved cloud properties:

CloudSat-CALIPSO nadir tracks: NASA vertical structure, radiative HR (FLXHR V4)

AIRS / IASI orbits: CIRS cloud properties

meteorological re-analyses: ERA-Interim atmospheric & surface properties

expand nadir track info across UT cloud systems & environment by machine learning:

- develop optimized 'non-linear regression models', which relate most suitable cloud, atmospheric & surface properties to HR, by training neural networks on collocated data (2007-2010)
- **2)** apply these models on the whole AIRS-CIRS data record (2003-2018)

predicted radiative HRs over tropics (30N-30S)

apply 8 ANN models (Cb, Ci, mid/low clds, clr sky over ocean / land) to AIRS-ERA data scenes determined by AIRS

Stubenrauch et al. 2020

Clear sky: tropospheric LW cooling (day & night) & SW warming (day)

Clouds introduce sharp vertical gradients :

LW warming by trapping surface emissions and cooling above by excess emission during day: SW warming within the cloud; SW and LW effects nearly compensate

UT: warming by thin Ci, strong cooling above Cb & thick Ci anvil **MT**: warming by Cb, thick Ci anvil

LT: warming by Cb, cooling above low clouds (also underneath Ci & thin Ci)

radiative LW heating rates: specific layers

ε structure of UT cloud systems

 predicted HRs over whole tropical band similar to nadir track, but giving a much more complete picture -> process studies

UT: strong warming by thin Ci, strong cooling above Cb & thick Ci anvil

- MT: warming by Cb& thick Ci, cooling above lower clouds
- LT: warming by Cb, cooling above low clouds (also underneath Ci & thin Ci)

Mesoscale Convective Systems: warm & cool regions

Regions of higher SST (> 302K): more humid colder, larger convective systems, with more thin Cirrus sourrounding anvil

regions of higher SST: higher systems with more UT thin Ci heating (opposed by strong cooling above Cb) & more Cb / Ci heating in mid & low atm

-> affects hor. & vert. gradients

Changes in relation to global Tsurf anomaly

1:30 AM deseasonalized anomalies in LW heating / cooling effect of MCS when present

 $d[cov_{cold MCS}/cov_{MCS}]/dT_s = +25 \pm 2 \% /°C$

48% of MCSs are cold MCS (T < 210K)

- timeseries of global T_{surf} anomaly mostly reflects ENSO / PDO variations & CO₂ increase \geq
- colder MCSs in warmer periods (El Niño)
 - -> deeper warming of upper & mid troposphere & cooling above the systems

Summary

IR Sounders reliably identify cirrus (day & night, COD>0.2); height = 0.5(top+app base)

> Amplitude & phase of UT cloud diurnal cycle estimated within 20% / 1.5h

Data availability:

IASI cloud L2 data distributed by AERIS https://iasi.aeris-data.fr/cloud/ & quicklooks
 AIRS cloud L2 data distributed by AERIS https://en.aeris-data.fr/cloud-airs-data/ (quicklooks in preparation)
 Diurnal amplitude & phase of UT clouds https://doi.org/10.13140/RG.2.2.13038.15681
 & L3 data will be in updated GEWEX Cloud Assessment database https://gewexca.aeris-data.fr/

synergetic UT cloud system approach based on IR sounder data powerful tool to study relation between convection & anvil properties:

more cold convective systems with relatively more surrounding thin Ci in warmer regions -> vertically deeper heating and additional heating from thin Ci (0.7 K/day)

Heating patterns follow well ENSO, with more colder MCSs in warmer periods (El Niño) leading to deeper warming of upper & mid troposphere & cooling above the systems

machine learning applied on cloud & atmospheric variables & training on 4 yrs radar-lidar -> 15 yr cloud vertical structure across cloud systems -> process studies predicted LW & SW heating rates mostly within 0.25 K/day Though the predictions introduce additional uncertainties,

we are able to study the structure of the cloud systems & their environment !

Outlook

train ANN to predict latent heating from TRMM (in progress by Giacomo Caria)

use 3D diabatic HR fields to study changes in atmospheric circulation in response to forcing (collaboration with L. Li, LMD)

❑ use 3D rad. HRs to evaluate new ice cloud scheme (& effect of SSP(IWC, T)) (collaboration M. Bonazzola, A. Baran)
Stubenrauch et al. JAMES 2019

CIRS retrieval may be applied to CrIS

GEWEX UTCC PROES (PROcess Evaluation Study on Upper Tropospheric Clouds & Convection) working group to advance our understanding on UT cloud feedbacks

https://gewex-utcc-proes.aeris-data/fr

if you want to join this group, please email claudia.stubenrauch@lmd.ipsl.fr

Thank you to the Sounder Teams for their continuous effort to check, calibrate & distribute the data !