Assimilating Irregularly Spaced Sparsely Observed Turbulent Signals with Hierarchical Bayesian Reduced Stochastic Filters

Kristen Brown

Department of Mathematics
North Carolina State University

Collaborator: John Harlim (NC State)

November 15, 2012
Motivation

- Observations from nature are often noisy, temporally irregular and spatially sparse. On the other hand, the typical predictor model is resolved on regularly spaced grid points.
Motivation

• Observations from nature are often noisy, temporally irregular and spatially sparse. On the other hand, the typical predictor model is resolved on regularly spaced grid points.

• Typically, various interpolation techniques are used to merge multiple satellite data
 For example: cloud clearing algorithm [Chahine, 1973].
Motivation

• Observations from nature are often noisy, temporally irregular and spatially sparse. On the other hand, the typical predictor model is resolved on regularly spaced grid points.

• Typically, various interpolation techniques are used to merge multiple satellite data
 For example: cloud clearing algorithm [Chahine, 1973].

• Processing data is often unavoidable
 For example: estimating rainfall given rain-gauge measurements.
Motivation

• Observations from nature are often noisy, temporally irregular and spatially sparse. On the other hand, the typical predictor model is resolved on regularly spaced grid points.

• Typically, various interpolation techniques are used to merge multiple satellite data For example: cloud clearing algorithm [Chahine, 1973].

• Processing data is often unavoidable For example: estimating rainfall given rain-gauge measurements.

• The goal of this talk is to assess the effect of processed data assimilated in the presence of model error.
Motivation

- Observations from nature are often noisy, temporally irregular and spatially sparse. On the other hand, the typical predictor model is resolved on regularly spaced grid points.

- Typically, various interpolation techniques are used to merge multiple satellite data. For example: cloud clearing algorithm [Chahine, 1973].

- Processing data is often unavoidable. For example: estimating rainfall given rain-gauge measurements.

- The goal of this talk is to assess the effect of processed data assimilated in the presence of model error.

- In particular, we will use hierarchical Bayesian framework.
Standard Bayesian Approach

Definition

- U: Random variable of the model state
- \tilde{V}: Random variable of the irregularly spaced observations
- $P(U, \tilde{V})$: Joint density between two random variables
Standard Bayesian Approach

Definition
- \(U \): Random variable of the model state
- \(\tilde{V} \): Random variable of the irregularly spaced observations
- \(P(U, \tilde{V}) \): Joint density between two random variables

Canonical Discrete-Time Filtering Problem:

\[
\begin{align*}
 u_{m+1} &= f(u_m) + \sigma_{m+1}, \quad \sigma \sim \mathcal{N}(0, r), \\
 \tilde{v}_m &= g(u_m) + \epsilon_m, \quad \epsilon_m \sim \mathcal{N}(0, r^o)
\end{align*}
\]
Standard Bayesian Approach

Definition

- \(U \): Random variable of the model state
- \(\tilde{V} \): Random variable of the irregularly spaced observations
- \(P(U, \tilde{V}) \): Joint density between two random variables

Canonical Discrete-Time Filtering Problem:

\[
\begin{align*}
 u_{m+1} &= f(u_m) + \sigma_{m+1}, \quad \sigma \sim \mathcal{N}(0, r), \\
 \tilde{v}_m &= g(u_m) + \epsilon_m, \quad \epsilon_m \sim \mathcal{N}(0, r^o)
\end{align*}
\]

Solution: Apply the Bayesian Theorem:

\[
P(U|\tilde{V}) \propto P(U)P(\tilde{V}|U).
\]
Consider $\nu \in V$ to be the random variable of interpolated observations at the regular model grid points. Our approach is to apply

$$P(U|\tilde{V}, V) \propto P(U)P(V|\tilde{V}, U)$$

$$\propto P(U)P(\tilde{V}|U, V)P(V|U).$$
Hierarchical Bayesian Approach

Consider \(v \in V \) to be the random variable of interpolated observations at the regular model grid points. Our approach is to apply

\[
P(U|\tilde{V}, V) \propto P(U)P(V|\tilde{V}, U) \\
\propto P(U)P(\tilde{V}|U, V)P(V|U).
\]

Step 1: We apply \(P(\tilde{V}|U, V)P(V|U) \) through an interpolation to obtain \(P(U)P(V|\tilde{V}, U) \). We compare a statistical interpolation called kriging with a deterministic linear interpolation.
Consider \(v \in V \) to be the random variable of interpolated observations at the regular model grid points. Our approach is to apply

\[
P(U | \tilde{V}, V) \propto P(U) P(V | \tilde{V}, U) \propto P(U) P(\tilde{V} | U, V) P(V | U).
\]

Step 1: We apply \(P(\tilde{V} | U, V) P(V | U) \) through an interpolation to obtain \(P(U) P(V | \tilde{V}, U) \). We compare a statistical interpolation called kriging with a deterministic linear interpolation.

Step 2: We apply \(P(U) P(V | \tilde{V}, U) \) through a reduced stochastic Fourier based filter.
Figure: The 2 layer QG model with baroclinic instability, resolved with 128 × 128 grid points in a 2D periodic domain [Smith et al, 2002]. The radius of deformation is chosen to mimic ocean turbulence. The top panels show the barotropic velocity field (arrows) and streamfunction Ψ, (contour) and the bottom panels show the baroclinic velocity field and streamfunction Ψ (bottom) at two different times.
Given two-dimensional noisy, sparse observations from the solution to the two-layer quasi-geostrophic model with baroclinic instability, the first task is to interpolate to a regular 6×6 grid.
Kriging is a maximum likelihood estimator of a random field Z modeled by

$$Z(s) = \mu(s) + \delta(s),$$

assuming Gaussian, stationary noises $\delta(s) \sim \mathcal{N}(0, C(s, s))$.

The steps of kriging:
1. Estimate the mean $\mu(s)$ using median polishing. [Cressie, 1993]
2. With the deviations $\delta(s)$ build a parametric covariance function. [Cressie, 1993]
3. Compute the conditional mean and covariance at each grid point using the observations and the parametric covariance function.

We compare ordinary kriging with a deterministic linear interpolation.
Kriging is a maximum likelihood estimator of a random field Z modeled by

$$Z(s) = \mu(s) + \delta(s),$$

assuming Gaussian, stationary noises $\delta(s) \sim \mathcal{N}(0, C(s, s))$.

The steps of kriging:

1. Estimate the mean μ using median polishing. [Cressie, 1993]
2. With the deviations δ build a parametric covariance function. [Cressie, 1993]
3. Compute the conditional mean and covariance at each grid point using the observations and the parametric covariance function.
Kriging is a maximum likelihood estimator of a random field Z modeled by

$$Z(s) = \mu(s) + \delta(s),$$

assuming Gaussian, stationary noises $\delta(s) \sim \mathcal{N}(0, C(s, s))$.

The steps of kriging:
1. Estimate the mean μ using median polishing. [Cressie, 1993]
2. With the deviations δ build a parametric covariance function. [Cressie, 1993]
3. Compute the conditional mean and covariance at each grid point using the observations and the parametric covariance function.

We compare ordinary kriging with a deterministic linear interpolation.
Spatial Interpolation Results

Figure: The true field (left) and the results of a linear interpolation (middle) and kriging interpolation (right).
Figure: The noise covariance in physical space (top) and Fourier space (bottom).
The next step is to apply a reduced stochastic Fourier based filter. The filter approximates the barotropic modes of the 2 layer QG model

\[
\frac{\partial q}{\partial t} + J(\psi, q) + \beta \frac{\partial \psi}{\partial x} + \kappa \nabla^8 q \\
+ \left[J(\psi^c, q^c) + U \frac{\partial \nabla^2 \psi^c}{\partial x} - \kappa \nabla^2 \psi^c \right] = 0
\]

in Fourier space with

\[
d\hat{\psi}(t) = (-d + i\omega)\hat{\psi}(t)dt + Fdt + \sigma dW(t).
\]

[Madja and Harlim, Chapter 12, 2012]
The next step is to apply a reduced stochastic Fourier based filter. The filter approximates the barotropic modes of the 2 layer QG model

$$\frac{\partial q}{\partial t} + J(\psi, q) + \beta \frac{\partial \psi}{\partial x} + \kappa \nabla^8 q$$

$$+ \left[J(\psi^c, q^c) + U \frac{\partial \nabla^2 \psi^c}{\partial x} - \kappa \nabla^2 \psi^c \right] = 0$$

in Fourier space with

$$d\hat{\psi}(t) = (-d + i\omega)\hat{\psi}(t)dt + Fdt + \sigma dW(t).$$

\(\hat{\psi}\): the horizontal Fourier component of the barotropic streamfunction \(\psi\),

[Madja and Harlim, Chapter 12, 2012]
The next step is to apply a reduced stochastic Fourier based filter. The filter approximates the barotropic modes of the 2 layer QG model

\[
\frac{\partial q}{\partial t} + J(\psi, q) + \beta \frac{\partial \psi}{\partial x} + \kappa \nabla^8 q
+ \left[J(\psi^c, q^c) + U \frac{\partial \nabla^2 \psi^c}{\partial x} - \kappa \nabla^2 \psi^c \right] = 0
\]

in Fourier space with

\[
d\hat{\psi}(t) = (-d + i\omega)\hat{\psi}(t)dt + Fdt + \sigma dW(t).
\]

\(\hat{\psi}\): the horizontal Fourier component of the barotropic streamfunction \(\psi\),

\(W(t)\): a complex-valued Wiener process,

[Madja and Harlim, Chapter 12, 2012]
The next step is to apply a reduced stochastic Fourier based filter. The filter approximates the barotropic modes of the 2 layer QG model

\[
\frac{\partial q}{\partial t} + J(\Psi, q) + \beta \frac{\partial \Psi}{\partial x} + \kappa \nabla^8 q + \left[J(\Psi^c, q^c) + U \frac{\partial \nabla^2 \Psi^c}{\partial x} - \kappa \nabla^2 \Psi^c \right] = 0
\]

in Fourier space with

\[
d\hat{\Psi}(t) = (-d + i\omega)\hat{\Psi}(t)dt + Fdt + \sigma dW(t).
\]

\(\hat{\Psi}\): the horizontal Fourier component of the barotropic streamfunction \(\Psi\),
\(W(t)\): a complex-valued Wiener process,
\(d\): damping,
\(\omega\): frequency,
\(F\): constant external forcing,
\(\sigma\): noise strength. [Madja and Harlim, Chapter 12, 2012]
The Kalman Filter is a solution to these equations and produces estimates of the mean and covariance prior and posterior to observation.
Figure: The RMS errors associated with each step: unfiltered kriging (dashes), filtered kriging (dashes with ‘+’ sign), unfiltered linear interpolation (solid line), and filtered linear interpolation (solid line with circles).
Filtering Results: $M = 36$ and $r^0 = 17.3$

Figure: Filtering results at one particular time. The circles illustrate observation locations.
Filtering Results: \(M = 36 \) and \(r^0 = 17.3 \)

Figure: The true barotropic streamfunction (top), interpolated results (middle panels) and filtered results (bottom panels) at one particular time. The circles illustrate observation locations.
Summary

- In every case, kriging outperformed the linear interpolation.

- Filtering further improved the results.

- However, the biggest improvements occurred in the cases of sparser observations or larger noise.

- The Mean Stochastic Model is a very simple one, and we expect the results could be improved with other models.
• In every case, kriging outperformed the linear interpolation.

• Filtering further improved the results.
• In every case, kriging outperformed the linear interpolation.

• Filtering further improved the results.

• However the biggest improvements occurred in the cases of sparser observations or larger noise.
• In every case, kriging outperformed the linear interpolation.

• Filtering further improved the results.

• However the biggest improvements occurred in the cases of sparser observations or larger noise.

• The Mean Stochastic Model is a very simple one, and we expect the results could be improved with other models.

