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Outline

1. Methane (CH),) is a greenhouse gas

2. Arctic is warming

3. CH, sources may grow

4. SWIR (NIR) sounders, like TROPOMI, need Sun light and have low S/N over
water and ice. They are inefficient in the Arctic.

5. TIR sounders (AIRS, IASI, etc) data are available 24/7 and year-round BUT
require warm surfaces (water or land).

6. We use AIRS v6 L3 (IR only) and NUCAPS IASI from the CLASS site.

Currently emission from the Arctic seas in models and
budgets
Is counted as ZERO!



Example CH, emissions from currently available models and inventories

CH4 INV emission, mg/m2/day
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IASI and CH4_INV are top-down, others are bottom-up. More information see
http://itranscom.project.asu.edu/pdfitranscom/T4.methane.protocol_v7.pdf



Annual mean 1Aal L4 emission in mg/m2day
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IASI and CH4_INV are top-down, others are bottom-up. More information see
http://itranscom.project.asu.edu/pdfitranscom/T4.methane.protocol_v7.pdf

Preliminary estimate of CH, flux from
IASI data (2010-2014)

West Siberia lowland (WSL) was assumed to emit 22
Tglyr. WSL CH4 anomaly referenced to N. Atlantic was
used to scale the map in flux units: mg/m?/day
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The Barents and Kara seas are of interest due to the following:

1) they are known for oillgas fields;

Also

2) Barents is impacted by heat flux from the warm Atlantic currents

3) and it is free of ice year-round that makes measurements from satellites
easier (warm surface).

Seaice in March 2012 Path of warm Atlantic water

Sea Ice Extent
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Total extent = 15.2 million sq km




Methane sources and ocean stratification in the Arctic seas

Ocean mixed layer in summer (warm and fresh)
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“Widespread methane seepage along the continental margin off Svalbard - from
Bjorngya to Kongsfjorden” by Mau et al. (2016)

August-September, 2015. Anomalies of of dissolved methane concentrations in nM:
note a very shallow Mixed Layer.

Mixed Layer Depth =40 m
Bjgrngya Hornsundb.  Isfjordenb.  PKF

In summer flux is really close to zero. Satellites are able to measure methane
both in summer and in winter.



Climatic effect of Arctic methane (“Methane hydrate gun hypotheses”)

The Arctic atmosphere

5 Gt CH,

Global CH4 burden
5 Gt

Arctic Hydrate = 500 Gt CH,

Emission of only 1% of
methane locked as
hydrate in the Arctic
seabed would result in
doubling its global
concentration.

The rest of the World
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According to the so-called “Methane Hydrate Gun hypotheses” [J. Kenneth et al, 2003],

methane emitted from hydrates may cause abrupt global warming, much faster than

now predicted.




Unreliable data for cold surfaces should be screened out. ThC is better than DOF.

Nov.-Dec. 2009-2012, sea only. Thermal Contrast (ThC) — Air temper-
- 3 R 15 E re at 4 km altitude must be 10° C lower
than surface temperature
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Degree of Freedom (DOF) — a parameter
characterizing information content, must be more
than 0.3 (criterion for AIRS v6 Level 3)
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Validation of IASI and AIRS using profiles of CH, measured from a
NOAA aircraft, summer months including 2018
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Apr.-Sept. 2003-2016, CH4 for THD: AIRS vs NOAA
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Averaged NOAA/ESRL aircraft profiles (courtesy Colm Sweeney)

Blue: lower troposphere LT (0-4 km), red: mid-upper troposphere MUT (4-8 km)

Slopes in LT ~ 0.5, slopes in MUT ~1.0. Dotted a priori lines correspond to zero sensitivity
LT is more useful to study emissions.



Monthly mean 0-4 km CH, in ppb retrieved from IASI data, 2013

(White is for data with Thermal Contrast <10° C, i.e., for cold surfaces)
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AIRS LT CH 4 2013-2015, June
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Methane anomaly near Svalbard and MLD AIRS and IASI
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Blue line is Mixed Layer Depth, calculated for the Box #8 from a global
ocean circulation model ECCO-2.

“Methane LT anomaly” is a difference in concentration between for Box #8
(near Svalbard) and combined boxes #1 and #2 (near Iceland). The higher
mixing, the higher methane.



Is there a positive trend in emission? If there is, the amplitude of SC should grow.
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Winter CH, over Kara grows faster than near

Iceland. Summer concentration trends at 2 sites
are similar.

The amplitude of the Kara seasonal cycle grows
with years and doubled from 2003 to 2018.

This may be a result of a positive trend of
emission from the seabed.




Conclusions (1)

1. AIRS v6 and IASI NUCAPS v1 indicate a significant methane
anomaly over the Arctic Ocean in a period between November and
April. This coincides with a period of good mixing of the water
column.

2. The amplitude of CH, seasonal cycle over Barents and Kara seas

Is growing with years. This may evidence a growing methane flux
from the seabed.



Conclusions (2): Suggestions what to do next for the Arctic methane.

A global universal retrieval technique (like NUCAPS or CLIMCAPS) may
be not sufficiently accurate for the Arctic specifics. A modified existing
code may be re-performed for the Arctic. Several input parameters may
be introduced from various independent sources ( MERRA-2, MW,
MODIS, etc):

1. Ice cover (concentration, thickness, types, emissivity, etc.)

2. Humidity and temperature profiles, SST.

3. Also single-FOV retrievals should be realized.

4. Further efforts to improve retrievals for the Lower troposphere.

This program should be oriented on a climatic influence of methane as a
greenhouse gas. Other parameters (gases, aerosols, H20, T ) specifically
for Arctic may be retrieved with a better accuracy.

Include AIRS and IASI methane data into inverse models
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