

NOAA-20 and SNPP NUCAPS Validation Updates

Nicholas R. Nalli^{1,2}, C. Tan^{1,2}, M. Divakarla^{1,2}, A. Gambacorta[†], M. Wilson^{1,2}, J. Warner³, T. Zhu^{1,2}, T. Wang^{1,2}, C. D. Barnet⁴, T. Reale², B. Sun^{1,2}, K. Pryor², L. Zhou², et al.

¹IMSG, Inc., Rockville, Maryland, USA

²NOAA/NESDIS/STAR, College Park, Maryland, USA

³UMD/CICS, College Park, Maryland, USA

⁴STC Inc., Columbia, Maryland, USA

[†]Formerly IMSG, Inc.

Acknowledgments

- Sounder EDR Validation Dataset collection
 - Carbon Trace Gases: Monika Kopacz (NOAA/UCAR), Greg Frost (NOAA/ESRL)
 - NASA Sounder Science Team: E. Olsen, T. Pagano, E. Fetzer (NASA/JPL)
 - Total Carbon Column Observing Network (TCCON) (D. Wunch et al.), TCCON Data Archive, hosted by the Carbon Dioxide Information Analysis Center (CDIAC), tccon.onrl.gov
 - Atmospheric Tomography (ATom) Mission: Kathryn McCain, Colm Sweeney (NOAA/ESRL), https://doi.org/10.3334/ORNLDAAC/1581
 - AirCore: Colm Sweeney, Bianca Baier (NOAA/ESRL)
- The NOAA Joint Polar Satellite System (JPSS-STAR) Office (M. D. Goldberg, et al.)
 and the NOAA/STAR Satellite Meteorology and Climatology Division.
- Sounder validation effort (past and present): C. D. Barnet (STC); A.K. Sharma, F.
 Iturbide-Sanchez, M. Pettey, C. Brown, E. Maddy, W. W. Wolf (STAR); L. Borg, R. O.
 Knuteson, D. Tobin (UW/CIMSS)

Outline

JPSS Sounder EDR Cal/Val Recap

- JPSS Level 1 Requirements
- Validation Hierarchy recap
- NUCAPS Algorithm
 - Overview of Recent Version Upgrades

NUCAPS Validation Status

- -T/H₂O/O₃ EDRs
 - SNPP CrIS Side-2
 - NOAA-20
- Carbon Trace Gas (CO/CH₄/CO₂)
 EDRs SNPP/NOAA-20
 - TCCON (ground-based spectrometers)
 - AirCore (balloon-borne in situ)

NUCAPS Validation

JPSS SOUNDER EDR CAL/VAL RECAP

JSTAR Cal/Val Program (Zhou, Divakarla, and Liu 2016)

JSTAR Cal/Val Phases

- Pre-Launch
- Early Orbit Checkout (EOC)
- Intensive Cal/Val (ICV)
 - Validation of EDRs against multiple correlative datasets
- Long-Term Monitoring (LTM)
 - Routine characterization of all EDR products and long-term demonstration of performance

- Sounder EDR validation methodology is based upon AIRS and IASI (Nalli et al., 2013, JGR Special Section on SNPP Cal/Val)
- J-1 (NOAA-20) sounder EDR Cal/Val Plan (Dec 2015)
 - The Cal/Val Plan included for the first time the validation of carbon trace gas EDRs (CO, CH₄ and CO₂), but the details had not been completely ironed out at that time.

Validation Methodology Hierarchies

T/H₂O/O₃ Profiles

(e.g., Nalli et al., JGR Special Section, 2013)

1. Numerical Model (e.g., ECMWF, NCEP/GFS) Global *Comparisons*

- Large, truly global samples acquired from Focus Days
- Useful as "transfer standard" (via double-differences), bias tuning and regression
- Limitation: Not independent truth data

2. Satellite Sounder EDR (e.g., AIRS, ATOVS, COSMIC) *Intercomparisons*

- Global samples acquired from Focus Days (e.g., AIRS)
- Limitation: Similar error characteristics

3. Conventional PTU/O3 Sonde Matchup Assessments

- WMO/GTS operational sondes or O3-sonde network (e.g., SHADOZ)
- Representation of global zones, long-term monitoring
- Large samples after a couple months (e.g., Divakarla et al., 2006; Reale et al. 2012)
- Limitations: Skewed distributions; mismatch errors; non-uniform radiosondes, assimilated into NWP

4. Dedicated/Reference PTU/O3 Sonde Matchup Assessments

- Dedicated for the purpose of satellite validation
- Reference sondes: CFH, GRUAN corrected RS92/RS41
- E.g., ARM sites (e.g., Tobin et al., 2006), AEROSE, CalWater/ACAPEX, BCCSO,
 PMRF
- Limitation: Small sample sizes, geographic coverage

5. Intensive Field Campaign *Dissections*

- Include dedicated sondes, some not assimilated into NWP models
- Include ancillary datasets, ideally funded aircraft campaign(s)
- E.g., SNAP, AEROSE, RIVAL, CalWater, JAIVEX, AWEX-G, EAQUATE

Carbon Trace Gases

1. Numerical Model Global *Comparisons*

- Examples: NOAA CarbonTracker (Lan et al. 2017), ECMWF, NCEP/GFS
- Large, truly global samples acquired from Focus Days
- Limitation: Not independent truth data

2. Satellite Sounder EDR Intercomparisons

- Examples: AIRS, OCO-2, MLS
- Global samples acquired from Focus Days (e.g., AIRS)
- Limitation: Similar error characteristics

3. Surface-Based Network Matchup Assessments

- Total Carbon Column Observing Network (TCCON) spectrometers (Wunch et al. 2010, 2011)
- AirCore balloon-borne in situ profile observations (Membrive et al. 2017)
- Provide routine independent measurements representing global zones akin to RAOBs
- Limitations: Small sample sizes, uncertainties in unit conversions, different sensitivities to atmospheric layers

4. Intensive Field Campaign In Situ Data Assessments

- Include ancillary datasets, ideally funded aircraft campaign(s)
- ATom, WE-CAN, ACT-America, FIREX

JPSS Specification Performance Requirements CrIS/ATMS Temperature and Moisture Profile EDR Uncertainty

Temperature Profile

Moisture Profile

CrIS/ATMS Atmospheric Vertical Temperature Profile (AVTP) Measurement Uncertainty – Layer Average Temperature Error				
PARAMETER	THRESHOLD	OBJECTIVE		
AVTP, Cloud fraction < 50%, surface to 300 hPa	1.6 K / 1-km layer	0.5 K / 1-km layer		
AVTP, Cloud fraction < 50%, 300–30 hPa	1.5 K / 3-km layer	0.5 K / 3-km layer		
AVTP, Cloud fraction < 50%, 30–1 hPa	1.5 K / 5-km layer	0.5 K / 5-km layer		
AVTP, Cloud fraction < 50%, 1–0.5 hPa	3.5 K / 5-km layer	0.5 K / 5-km layer		
AVTP , Cloud fraction ≥ 50%, surface to 700 hPa	2.5 K / 1-km layer	0.5 K / 1-km layer		
AVTP , Cloud fraction ≥ 50%, 700–300 hPa	1.5 K / 1-km layer	0.5 K / 1-km layer		
AVTP , Cloud fraction ≥ 50%, 300–30 hPa	1.5 K / 3-km layer	0.5 K / 3-km layer		
AVTP , Cloud fraction ≥ 50%, 30–1 hPa	1.5 K / 5-km layer	0.5 K / 5-km layer		
AVTP , Cloud fraction ≥ 50%, 1–0.5 hPa	3.5 K/ 5-km layer	0.5 K/ 5-km layer		

"Clear to Partly-Cloudy"			
(Cloud Fraction < 50%)			
\$			
IR+MW retrieval			

"Cloudy"
(Cloud Fraction >= 50%)

MW-only retrieval

CrIS/ATMS Atmospheric Vertical Moisture Profile (AVMP) Measurement Uncertainty – 2-km Layer Average Mixing Ratio % Error				
PARAMETER	THRESHOLD	OBJECTIVE		
AVMP , Cloud fraction < 50%, surface to 600 hPa	Greater of 20% or 0.2 g·kg ⁻¹ / 2-km layer	10%		
AVMP, Cloud fraction < 50%, 600–300 hPa	Greater of 35% or $0.1\mathrm{g\cdot kg^{-1}}$ / 2-km layer	10%		
AVMP , Cloud fraction < 50%, 300–100 hPa	Greater of 35% or 0.1 $\ensuremath{\text{g}}\xspace \cdot \ensuremath{\text{kg}}\xspace^{-1}$ / 2-km layer	10%		
AVMP , Cloud fraction ≥ 50%, surface to 600 hPa	Greater of 20% of 0.2 $g \cdot kg^{-1}$ / 2-km layer	10%		
AVMP , Cloud fraction ≥ 50%, 600–400 hPa	Greater of 40% or 0.1 g $\mathrm{kg^{\text{-}1}}/$ 2-km layer	10%		
AVMP , Cloud fraction ≥ 50%, 400–100 hPa	Greater of 40% or 0.1 g $\mathrm{kg^{-1}}/$ 2-km layer	NS		

Global requirements defined for lower and upper atmosphere subdivided into 1-km and 2-km layers for AVTP and AVMP, respectively.

Source: (L1RD, 2014, pp. 41, 43)

JPSS Specification Performance Requirements CrIS Trace Gas EDR Uncertainty (O₃, CO, CO₂, CH₄)

Ozone Profile

Carbon Gases

CrIS Infrared Trace Gases Specification Performance Requirements				
PARAMETER	THRESHOLD	OBJECTIVE		
O ₃ (Ozone) Profile Precision, 4–260 hPa (6 statistic layers)	20%	10%		
O ₃ (Ozone) Profile Precision, 260 hPa to sfc (1 statistic layer)	20%	10%		
O ₃ (Ozone) Profile Accuracy, 4–260 hPa (6 statistic layers)	±10%	±5%		
O ₃ (Ozone) Profile Accuracy, 260 hPa to sfc (1 statistic layer)	±10%	±5%		
O ₃ (Ozone) Profile Uncertainty, 4–260 hPa (6 statistic layers)	25%	15%		
O ₃ (Ozone) Profile Uncertainty, 260 hPa to sfc (1 statistic layer)	25%	15%		
CO (Carbon Monoxide) Total Column Precision	15% (CrIS FSR)	3%		
CO (Carbon Monoxide) Total Column Accuracy	±5% (CrIS FSR)	±5%		
CO ₂ (Carbon Dioxide) Total Column Precision	0.5% (2 ppmv)	1.05 to 1.4 ppmv		
CO ₂ (Carbon Dioxide) Total Column Accuracy	±1% (4 ppmv)	NS		
CH ₄ (Methane) Total Column Precision	1% (≈20 ppbv)	NS		
CH ₄ (Methane) Total Column Accuracy	±4% (≈80 ppmv)	NS		

Source: (L1RD, 2014, pp. 45-49)

NOAA Unique Combined Atmospheric Processing System (NUCAPS) Algorithm

Operational algorithm

- NOAA Enterprise Algorithm for CrIS/IASI/AIRS (AST v5.9; after Susskind, Barnet and Blaisdell, 2003)
- Global non-precipitating conditions
- Atmospheric Vertical Temperature and Moisture Profiles (AVTP, AVMP)
- Trace gases: O₃, CO, CO₂, CH₄

Users

- Weather Forecast Offices (AWIPS)
 - Nowcasting / severe weather
 - Alaska (cold core)
- NOAA/CPC (OLR)
- NOAA/ARL (IR ozone, trace gases)
- NOAA TOAST product (IR ozone EDR)
- Basic and applied science research (e.g., Pagano et al., 2014)
 - Stability Indices (e.g., Bloch et al. 2019; Iturbide-Sanchez et al. 2018)

NUCAPS Updates and Offline Versioning

- Version 1 (CrIS NSR)
 - V1.5
 - Operational system beginning in June 2015
 - Ran on CrIS nominal spectral-resolution (NSR)
 - Validated Maturity for AVTP/AVMP EDR attained Sep 2014
- Version 2 (Phase 4, CrIS FSR)
 - Transition to CrIS full-res (FSR) data (FSR SARTA by L. Strow et al., UMBC)
 - Included IR-only version (risk-mitigation for ATMS loss)
 - Phase 4 Algorithm Readiness Review (ARR) delivered July 2017
 - ATBD delivered August 2017
 - V2.1.1 Direct Broadcast capability

- V2.1.11
 - New CO channels to 2200 cm⁻¹
 - New CO and CH₄ Tunings
- V2.1.12
 - V2.1.12c
 - NOAA-20 Provisional Maturity for AVTP/AVMP, Beta Maturity for O3/CO/CH4/CO2, June 2018
 - Delivered to OPS June 2018
 - V2.1.12d
 - Cloud-clearing channel update
 - Current delivered version
- V2.5.2.x (current offline test versions)
 - Full spectral tunings for SNPP and N-20
 - Regression update for N-20
 - MW tuning updates for SNPP and N-20
 - Candidate for October 2019 DAP

NUCAPS Validation

SNPP CRIS SIDE-2 T/H₂O/O₃

SNPP CrIS Side-2 NUCAPS AVTP vs ECMWF

Global Focus Days (NUCAPS v2.2)

SNPP CrIS Side-2 NUCAPS AVMP (H₂O) vs ECMWF

Global Focus Days (NUCAPS v2.2)

SNPP CrIS Side-2 NUCAPS IR Ozone Profile (O₃) vs ECMWF

Global Focus Days (NUCAPS v2.2)

NUCAPS Validation

NOAA-20 *T*/H₂O/O₃

NOAA-20 NUCAPS v2.5.2.x AVTP vs ECMWF

Focus Day 20 August 2018

NOAA-20 NUCAPS v2.5.2.x AVMP (H₂O) vs ECMWF

Focus Day 20 August 2018

NOAA-20 NUCAPS v2.5.2.x IR Ozone Profile (O₃) vs ECMWF

Focus Day 20 August 2018

NUCAPS Validation

SNPP/NOAA-20 CARBON TRACE GAS

Overview of Carbon Trace Gas Validation

- Carbon trace gas EDR validation versus JPSS program established uncertainty specifications is a relatively new sounder validation requirement that began during the transition period to the FSR CrIS NUCAPS
- Validation strategy leverages global truth datasets, including
 - Satellite EDRs from Global Focus Days (Cal/Val Method #2)
 - Valuable for inter-satellite stability
 - Aqua AIRS; TROPOMI; potential future work: OCO-2, MLS
 - Total Carbon Column Observing Network (TCCON) (Wunch et al. 2011)
 (Cal/Val Method #3)
 - Global network of ground-based FTS that accurately measure total column abundances of CO₂,
 CO, CH₄, N₂O trace gases
 - Provides "spot checks" for verifying NUCAPS and AIRS
 - AirCore (Cal/Val Method #3)
 - ATom campaigns (Cal/Val Method #4; not shown here)

Collocation Methodology

 Include all FOR within threshold radius (e.g., 150 km) time window (e.g., ±2 hours)

Trace Gas Quality assurance (QA)

- NUCAPS IR+MW quality flag
- NUCAPS trace gas QA flags
 - CO trace gas flags developed and tested
 - CH4 and CO2 trace gas flags still undergoing development

Total Carbon Column Observing Network (TCCON)

Focus Day Station Collocations (1-Apr-18, 20-Aug-18)

TCCON Stations (01-Apr-18 20-Aug-18 Focus Day)

TCCON Column Averaging Kernels

SNPP NUCAPS v2.5.2.1 Total Column Trace Gases vs TCCON

Focus Days: 1 April 208, 20 August 2018

TCCON (Wunch et al. 2011)

NUCAPS SNPP v2.5.2.1 acc+qa (01-Apr-18 20-Aug-18)

NOAA-20 NUCAPS v2.5.2.1 Total Column Trace Gases vs TCCON

TCCON (Wunch et al. 2011)

NOAA ESRL AirCore Sampling System

(Membrive et al. 2017; Karion et al. 2010)

- Innovative, balloon-borne in situ sampling system
- Uses long stainless steel tube, open at one end and closed at the other
- Collects a sample (or "core") of the ambient atmospheric air column during its descent
- The "core" is physically recovered, sealed, then brought back to the lab for analysis using a Picarro trace gas analyzer.
- Measures mole fractions for trace gases CO, CH₄ and CO₂
- Advantages
 - Geographic coverage over land
 - Relatively high vertical resolution profiles over full tropospheric column

- We obtained ~27 soundings since March 2018 for the NOAA-20 validation effort (courtesy of Colm Sweeny and Monika Kopacz)
 - Balloon launches were timed for satellite overpasses
 - The original "high density" soundings have been rigorously reduced to 100 layer RTA

AirCore Profile Sample

700

1.5 2

CO₂×10¹⁷

25

10

 $CH_4 \times 10^{17}$

Launch Space-Time Locations

Sep 2019

Sample 100 Layer RTA

AirCore Profiles 27-Jul-2018 18:33:28

 $H_2O \times 10^{21}$

700

0

300

800

200

250

 $T_{o}ff(K)$

600

700 800 900

0

 $CO \times 10^{16}$

Applying NUCAPS Effective Averaging Kernels (AKs)

 AKs define the vertical sensitivity of the sounder measurement system

$$\mathbf{A} \equiv \frac{\partial \hat{\mathbf{x}}}{\partial \mathbf{x}}$$

- This facilitates intercomparisons of measurements obtained by two different observing systems
- The NUCAPS effective AKs, A_e, (Maddy and Barnet 2008) can be used to "smooth" correlative truth (at RTA layers), thereby removing null-space errors otherwise present, i.e.

$$\mathbf{x_s} = \exp\{\ln(\mathbf{x_0}) + \mathbf{A_e}[\ln(\mathbf{x}) - \ln(\mathbf{x_0})]\}$$

SNPP NUCAPS component AKs from F93 files

RTA-layer **effective AKs** (*Maddy & Barnet* 2008)

Zonal Mean Column Effective Averaging Kernels: O₃, CO

Ozone NUCAPS 2.1.12c - Focus Day 20150217 O₃ Zonal Means

Carbon Monoxide

NUCAPS 2.1.12c - Focus Day 20150217 CO Zonal Means

Zonal Mean Column Effective Averaging Kernels: CH₄, CO₂

Methane NUCAPS 2.1.12c - Focus Day 20150217 CH₄ Zonal Means

Carbon Dioxide

NUCAPS 2.1.12c - Focus Day 20150217 CO₂ Zonal Means

SNPP NUCAPS (v2.5.2.1) versus AirCore

AirCore

(Membrive et al. 2017; Karion et al. 2010)

NUCAPS snpp v2521 Retrieval versus AK-smoothed AirCore Profile Statistics (ACC+QA, -2 2 h, 100 km

NUCAPS snpp v2521 vs AK-smoothed AirCore

NOAA-20 NUCAPS (v2.5.2.1) versus AirCore

AirCore

(Membrive et al. 2017; Karion et al. 2010)

NUCAPS j01 v2521 Retrieval versus AK-smoothed AirCore Profile Statistics (ACC+QA, -2 2 h, 100 km)

Summary and Future Work

- Validated Maturity Review scheduled for 15 Oct 2019
 - NOAA-20 T/H₂O/O₃ Validated Maturity
 - SNPP/NOAA-20 Carbon Trace Gases
 - CO Validated Maturity
 - CH₄ Beta-Provisional Maturity
 - CO₂ Beta Maturity
 - Recent NUCAPS upgrades have focused on upgrades/optimizations of the CO and CH4 trace gas EDRs
 - Ongoing Validation of SNPP NUCAPS
 CO/CH4/CO2 versus ATom truth datasets show
 - CO currently meets JPSS Requirements
 - O CH4 and CO2 are close to meeting requirements
 - TCCON, AirCore and AIRS will be used as "transfer standards" between SNPP and NOAA-20

• Future Work

- Ongoing NUCAPS development, Cal/Val and Long-Term Monitoring
 - Continue v2.x algorithm optimizations
 - Further upgrades/optimizations for CH₄ and CO₂ products
 - Continue support of dedicated RAOBs (ARM, RIVAL, AEROSE)
- Other Related Work
 - Surface emissivity upgrades/updates
 - IR sea surface emissivity (IRSSE) model upgrades (cf. Nalli et al. talk Thursday)
 - Continued support EDR user applications (AWIPS, AR/SAL, atmospheric chemistry users)

NUCAPS Validation

THANK YOU! QUESTIONS?

NUCAPS Validation

BACKUP SLIDES