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Objectives

• Advanced Information Systems Technology (AIST) program
within NASA ESTO

• Project will “develop statistical methods and analysis software to
facilitate uncertainty quantification (UQ) for Level-2 atmospheric
remote sensing data products produced by operational retrieval
algorithms.”

• Apply technology to understand sources of uncertainty in
AIRS Level-2 retrieval algorithm

• Use technology to characterize the feasibility of drought
detection with AIRS on regional scales, and other
applications that use AIRS data
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Data Uncertainty

• Data uncertainty represents lack of knowledge about a
geophysical quantity of interest (QOI) after observing relevant
data.

• The true value of the QOI, X, is generally unknown, so
plausible/likely values must be characterized.

• Probability offers a coherent framework for representing the
distribution of the QOI, or the plausible error X̂− X, given an
estimate X̂ based on observed data.

• Earth science data records are relying on increasingly complex
methods for constructing estimates X̂.

• Remote sensing retrievals using satellite radiances and
radiative transfer models

• Data assimilation using Earth system models and multiple
data sources
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VVUQ

• National Research Council report (NRC, 2012) places
uncertainty quantification (UQ) for complex physical systems in a
probabilistic framework.

• UQ methodology seeks to identify the impact of sources, or
contributors, to the distribution of the error for a QOI.

• A probabilistic framework benefits from representing the system
as a data-generating process, with the QOI as an outcome.

• Monitoring the process includes describing the prediction error
under a particular set of conditions, such as a particular version
of a retrieval algorithm.

• Improving the process can result from improved understanding
of error sources.

• UQ has a role in both monitoring and improvement.
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Observing System

• General retrieval objective: infer unknown surface and/or
atmosphere states from remote sensing observations.

• Typically heterogeneous collection of unknowns, such as surface
and atmosphere characteristics.

• Simulation of the data-generating process provides UQ insights.

• Ideally UQ includes characterizing the joint distribution of [X, X̂].
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Retrieval algorithm teams provide simulation experiment datasets.

Proposed software is 
implemented offline to 
analyze experiments.

• Observing system uncertainty experiment
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Figures of Merit

• Retrieval properties can be summarized with figures of merit
(FOM) based on Monte Carlo experiment.

• FOM is a quantitative summary of the joint distribution [X,Y, X̂]

b = E
(

X̂− X
)

Bias

V = Cov
(

X̂− X
)

Covariance

D = (diag(V))1/2 Std Dev

• Multivariate FOMs have been proposed for retrieval simulation
experiments. (Hobbs et al., 2017; Cressie and Burden, 2015)

P = D−1VD−1 Correlation

z = D−1b Icv
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QOI

• Framework has flexibility
for different retrievals R.

• Additional FOMs can
diagnose reported
retrieval uncertainties.

• Role of nonlinearity
• Prediction interval

(region) coverage

• Often interest in a
functional QOI g(X) and
retrieval g(X̂). Example:
vapor pressure deficit
(VPD)
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Project Objectives

• Python module for analysis of OSUEs
• Generic classes for figures of merit (FOM) that apply to

various retrievals
• Retrieval-specific classes: OCO-2, AIRS

• Implement OSUE for AIRS operational retrieval
• Experiments for a variety of conditions, termed geophysical

templates
• Identify implications for AIRS data in applications
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Templates

• A simulation experiment is
executed with reference to a
specific set of atmospheric and
observing conditions, which
constitute a geophysical
template.

• Range of times/locations
• Reference data

(reanalysis, in situ data)

• Project’s AIRS templates
motivated by applications

• Drought detection
(Behrangi et al., 2016)

• Validation with MAGIC
campaign (Zhou et al.,
2015)

http://droughtmonitor.unl.edu
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Forward Model

• SARTA two-slab forward model (DeSouza-Machado et al., 2018)

• Construct cloud slab state from reanalysis cloud water/ice
content

Example cloud slab definitions
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State Vector

State contains atmospheric
vertical profiles plus cloud
properties for ≤ two slabs

Temperature vertical profile
RH vertical profile
Cloud fraction (each FOV)
Cloud type
Cloud temperature
Cloud top pressure
Cloud bottom pressure
Cloud particle size
Cloud non-gas water
Surface pressure, temp, altitude
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Cloud States
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Probability Model
• State vector ensembles can be informed by reanalysis, model

nature run, and actual retrievals.

• Develop probabilistic representation using mixture modeling.

• Apply quantile transformation to preserve physical constraints.

• Synthetic states randomly generated from fitted model.
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Experiment
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AIRS Multivariate
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Inference for VPD
• Experiment yields joint distribution for true g(X) and retrieved

g(X̂) QOI.

• Inference may focus on conditional distribution,
[
g(X)|g(X̂)

]
• Construct single-sounding prediction intervals, possibly

bias-corrected
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Discussion

• Upcoming activities

• MAGIC templates: Provide state vector ensembles to data
fusion team for UQ pilot study

• Potential incorporation to Level 3 products
• Python module examples and documentation

• Interaction with AIRS project and science teams

• Synergy with other activities: validation, data fusion
• Long term: potential contribution to uncertainty information

in products
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• Suggestions and contributions from Bill Irion, Sergio
DeSouza-Machado, Brian Kahn, Susan Kulawik, Maya Shen,
and Ben Smith are appreciated.

Questions?
Jonathan.M.Hobbs@jpl.caltech.edu

c© 2018. Government sponsorship acknowledged.
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