

A Simulation-Based Perspective on the Joint Probability Distribution of Atmospheric States and AIRS Retrievals

Jon Hobbs¹ Joint work with Ali Behrangi², Amy Braverman¹, Eric Fetzer¹, Kyo Lee¹, Hai Nguyen¹, and Joaquim Teixeira¹

¹ Jet Propulsion Laboratory, California Institute of Technology

²University of Arizona

Objectives

- Advanced Information Systems Technology (AIST) program within NASA ESTO
- Project will "develop statistical methods and analysis software to facilitate uncertainty quantification (UQ) for Level-2 atmospheric remote sensing data products produced by operational retrieval algorithms."
 - Apply technology to understand sources of uncertainty in AIRS Level-2 retrieval algorithm
 - Use technology to characterize the feasibility of drought detection with AIRS on regional scales, and other applications that use AIRS data

Data Uncertainty

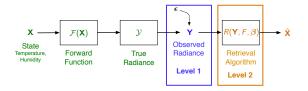
- Data uncertainty represents lack of knowledge about a geophysical quantity of interest (QOI) *after observing relevant data*.
- The true value of the QOI, **X**, is generally unknown, so plausible/likely values must be characterized.
- Probability offers a coherent framework for representing the distribution of the QOI, or the plausible error $\hat{\mathbf{X}} \mathbf{X}$, given an estimate $\hat{\mathbf{X}}$ based on observed data.
- Earth science data records are relying on increasingly complex methods for constructing estimates $\hat{\mathbf{X}}$.
 - Remote sensing retrievals using satellite radiances and radiative transfer models
 - Data assimilation using Earth system models and multiple data sources

VVUQ

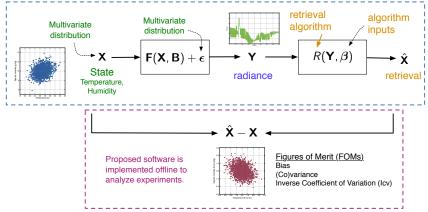
- National Research Council report (NRC, 2012) places uncertainty quantification (UQ) for complex physical systems in a probabilistic framework.
- UQ methodology seeks to identify the impact of sources, or contributors, to the distribution of the error for a QOI.
- A probabilistic framework benefits from representing the system as a data-generating process, with the QOI as an outcome.
- Monitoring the process includes describing the prediction error under a particular set of conditions, such as a particular version of a retrieval algorithm.
- Improving the process can result from improved understanding of error sources.
- UQ has a role in both monitoring and improvement.

Observing System

- General retrieval objective: infer unknown surface and/or atmosphere states from remote sensing observations.
- Typically heterogeneous collection of unknowns, such as surface and atmosphere characteristics.
- Simulation of the data-generating process provides UQ insights.
- Ideally UQ includes characterizing the joint distribution of [X, X].



OSUE



Observing system uncertainty experiment

Figures of Merit

- Retrieval properties can be summarized with figures of merit (FOM) based on Monte Carlo experiment.
- FOM is a quantitative summary of the joint distribution [X, Y, X]

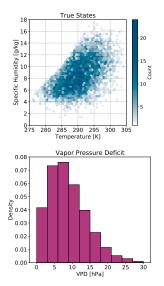
$$\begin{aligned} \mathbf{b} &= E\left(\hat{\mathbf{X}} - \mathbf{X}\right) & \text{Bias} \\ \mathbf{V} &= Cov\left(\hat{\mathbf{X}} - \mathbf{X}\right) & \text{Covariance} \\ \mathbf{D} &= (diag(\mathbf{V}))^{1/2} & \text{Std Dev} \end{aligned}$$

 Multivariate FOMs have been proposed for retrieval simulation experiments. (Hobbs et al., 2017; Cressie and Burden, 2015)

$$\mathbf{P} = \mathbf{D}^{-1}\mathbf{V}\mathbf{D}^{-1}$$
 Correlation
$$\mathbf{z} = \mathbf{D}^{-1}\mathbf{b}$$
 low

QOI

- Framework has flexibility for different retrievals *R*.
- Additional FOMs can diagnose reported retrieval uncertainties.
 - Role of nonlinearity
 - Prediction interval (region) coverage
- Often interest in a functional QOI g(X) and retrieval g(X̂). Example: vapor pressure deficit (VPD)

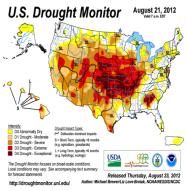


Project Objectives

- Python module for analysis of OSUEs
 - Generic classes for figures of merit (FOM) that apply to various retrievals
 - Retrieval-specific classes: OCO-2, AIRS
- Implement OSUE for AIRS operational retrieval
 - Experiments for a variety of conditions, termed *geophysical templates*
 - Identify implications for AIRS data in applications

Templates

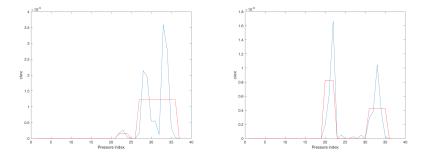
- A simulation experiment is executed with reference to a specific set of atmospheric and observing conditions, which constitute a *geophysical template*.
 - Range of times/locations
 - Reference data (reanalysis, in situ data)
- Project's AIRS templates motivated by applications
 - Drought detection (Behrangi et al., 2016)
 - Validation with MAGIC campaign (Zhou et al., 2015)



http://droughtmonitor.unl.edu

Forward Model

- SARTA two-slab forward model (DeSouza-Machado et al., 2018)
- Construct cloud slab state from reanalysis cloud water/ice content

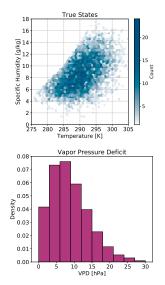


Example cloud slab definitions

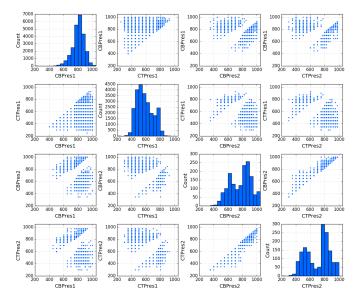
State Vector

State contains atmospheric vertical profiles plus cloud properties for \leq two slabs

Temperature vertical profile RH vertical profile Cloud fraction (each FOV) Cloud type Cloud temperature Cloud top pressure Cloud bottom pressure Cloud particle size Cloud non-gas water Surface pressure, temp, altitude



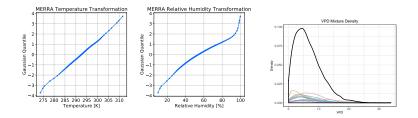
Cloud States



Simulation-Based UQ

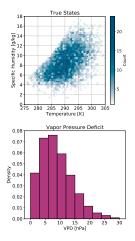
Probability Model

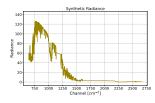
- State vector ensembles can be informed by reanalysis, model nature run, and actual retrievals.
- Develop probabilistic representation using mixture modeling.
- Apply quantile transformation to preserve physical constraints.
- Synthetic states randomly generated from fitted model.

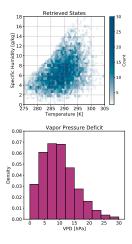


Probability model: Gaussian mixture with quantile transformation

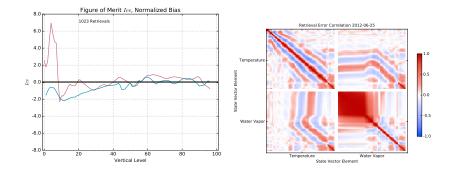
Experiment







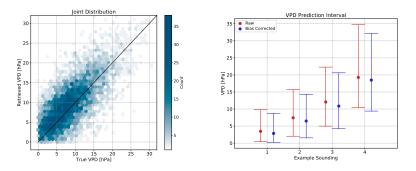
AIRS Multivariate



Multivariate retrieval error distribution for a single AIRS experiment

Inference for VPD

- Experiment yields joint distribution for true $\mathbf{g}(\mathbf{X})$ and retrieved $\mathbf{g}(\hat{\mathbf{X}})$ QOI.
- Inference may focus on conditional distribution, $\left| \mathbf{g}(\mathbf{X}) | \mathbf{g}(\hat{\mathbf{X}}) \right|$
- Construct single-sounding prediction intervals, possibly bias-corrected



Discussion

- Upcoming activities
 - MAGIC templates: Provide state vector ensembles to data fusion team for UQ pilot study
 - Potential incorporation to Level 3 products
 - Python module examples and documentation
- Interaction with AIRS project and science teams
 - Synergy with other activities: validation, data fusion
 - Long term: potential contribution to uncertainty information in products

 Suggestions and contributions from Bill Irion, Sergio DeSouza-Machado, Brian Kahn, Susan Kulawik, Maya Shen, and Ben Smith are appreciated.

> Questions? Jonathan.M.Hobbs@jpl.caltech.edu

© 2018. Government sponsorship acknowledged.

References

References

- Behrangi, A., Fetzer, E. J., and Granger, S. L. (2016). Early detection of drought onset using near surface temperature and humidity observed from space. *International Journal of Remote Sensing*, 37:3911–3923.
- Cressie, N. and Burden, S. (2015). Figures of merit for simultaneous inference and comparisons in simulation experiments. *Stat*, 4:196–211.
- DeSouza-Machado, S., Strow, L. L., Tangborn, A., Huang, X., Chen, X., Liu, X., Wu, W., and Yang, Q. (2018). Single-footprint retrievals for AIRS using a fast twoslab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm. *Atmos. Meas. Tech.*, 11:529–550. doi:10.5194/amt-11-529-2018.
- Hobbs, J., Braverman, A., Cressie, N., Granat, R., and Gunson, M. (2017). Uncertainty quantification for retrieving atmospheric CO₂ from satellite data. *SIAM/ASA J. Uncertainty Quantification*, 5:956–985.
- NRC (2012). Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification. The National Academies Press, Washington, DC.