NSSTM Applications Session

Converting science into products for decision-makers

AIRS Applications & User Services: A Summary of Efforts and Plans for FY19

Sharon Ray

AIRS Applications Development / User Services Lead
Jet Propulsion Laboratory, California Institute of Technology
October 2018

Joao Teixeira, Tom Pagano, Eric Fetzer, Bjorn Lambrigtsen Steve Licata, Paulo Penteado, Jeff Hall Vince Realmuto, Stephanie Granger, Alireza Farahmand, Heidar Thrastarson (JPL) Emily Serman (USC/JPL)

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Applications

Overview
Flu – Drought – Fire
Volcanic Plume Detection

User Services
User Guide Upgrade

Visualization

NEW SVS Visualization - *Gravity Waves*Demo - AIRS products in GIBS & Worldview

AIRS Applications In Play

Weather	Weather prediction centers world-wide	
Aviation	Washington DC VAAC • SO2 alert Support to Aviation Control Service (supports Toulouse VAAC) • Daily global SO2 BT Diff • SO2 load (BIRA/NILU Prata retrieval) • Ash index NOAA Rapid Update Cycle Rapid Refresh Model • Volcanic ash detection • SO2 & Dust Detection for Plume Detection Rapid Response	2017 Earth Science Senior Review Subcommittee AIRS data are of significant importance to FAA and the aviation community (sulfur dioxide, volcanic plumes).
Drought	US Drought Monitor	
Wildfire	Fire Danger Assessment System	
Health	Influenza ForecastingDengueZika	In development

ARL Levels and AIRS Applications

1	2	3	4	5	6	7	8	9
Basic Research	Application Concept	Proof of App Concept	Initial Integrn & Verification	Validation in Relevant Environ	Demonstation in Relevant Environ	Prototype in Decn Making	Completed and Qualified	Operational
Baseline Ideas	Invention	Viability Established	Prototype/Plan Includes Dec Sup activities	Potential Determined	Potential Demonstrated	Functionality Demonstrated	Functionality Proven	Sustained Use
	Dengue Zika Temperature Inversion Cold Air Aloft	Volcano Rapid Response Flu Forecast Model	Wildfire FDAS (end of FY18)			Drought VPD		AIRS in Weather Prediction Systems SO2 @ VAAC/SACS for Volcanic Plume Detection

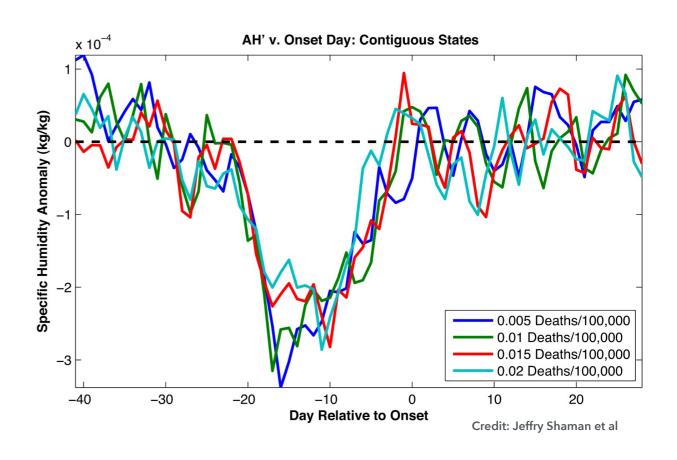
- ARL Level Highest level for which all milestones preceding it completed in full
- Ideal to have applications in a range of levels
- Not expected projects start at ARL 1 and end at ARL 9
- Can help determine if staff needed for future ARL level

AIRS & Influenza

Heidar Thrastarson, Joao Teixeira (JPL) Emily Serman (USC/JPL)

Studies show humidity conditions a leading explanation for seasonal behavior of flu outbreaks in temperate regions

Shaman et al., 2010, Shaman & Karspeck, 2012


Increased wintertime flu-related mortality in US associated with anomalously low absolute humidity levels that precede outbreaks

JPL Flu Forecasting Model

Runs quasi-operationally, driven by humidity & flu data; City, state, regional scale; Results confirm humidity-flu connection

Credit: State Records, New South Wales (1919)

Decision-maker involvement in your application

Applications > Decision-makers

Get decision-makers involved early

- Ask questions
- Better understand DM needs, expectations, criteria, process
- Get inside advice, recommendations, data
- Develop application tuned to meet/enhance DM needs (avoid bad pathways)
- Build awareness of your application with DM
- Establish trust you listened

Enroll them as a "partner" early in the process

Improve potential for success

LA County Dept. of Public Health Acute Communicable Disease Center

Meeting

Understand LAC process for flu decision support

Understand what LAC needs and how to provide it

Potentially build a collaboration

LAC – Surveillance/aggregation of data; Develop protocols for response

Let them know about JPL flu model

LAC not familiar with Shaman papers & humidity connection to flu

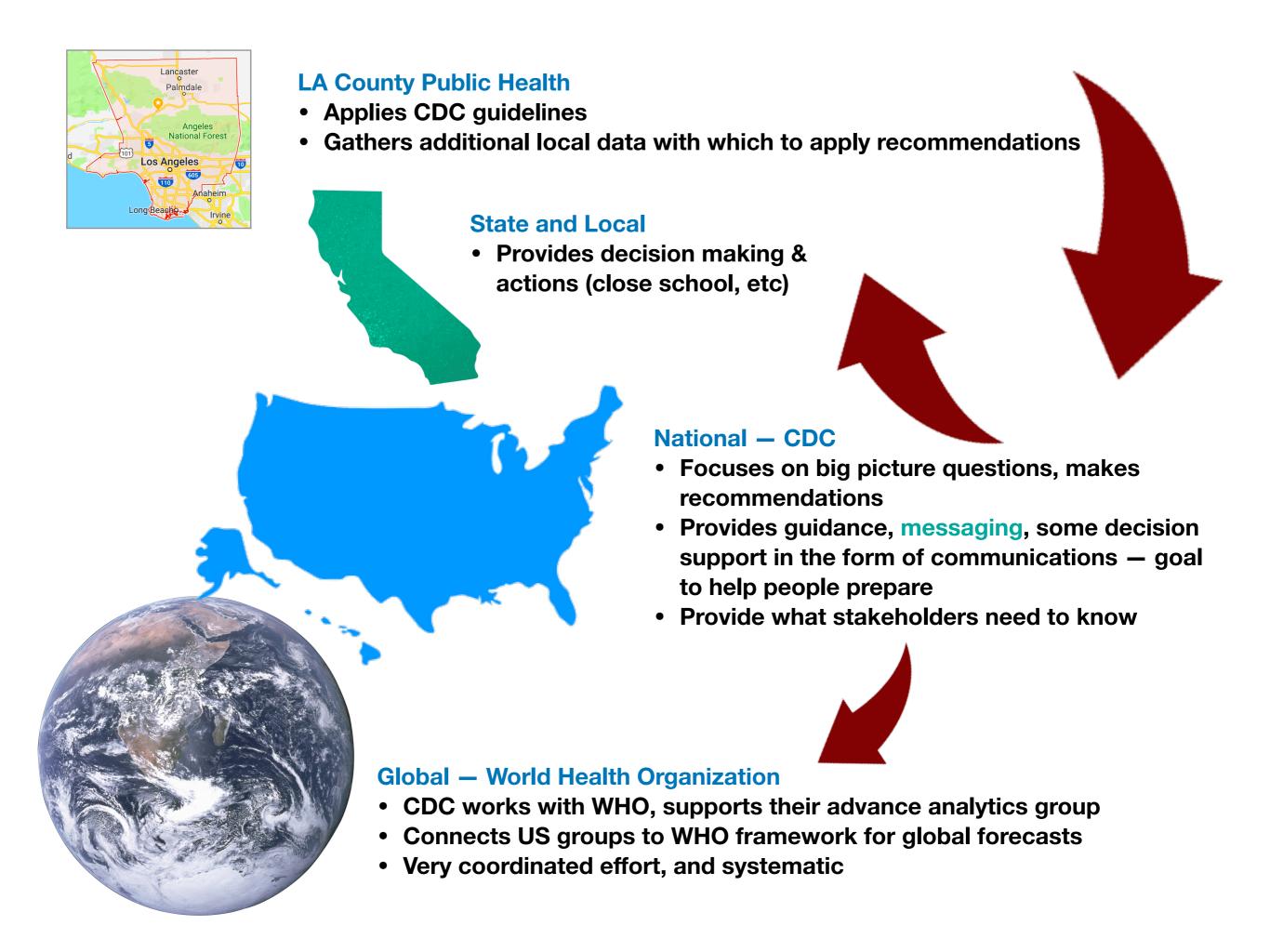
Outcome

LAC will share aggregated flu data with JPL flu team (ILI @ city level, 1 week lag time)

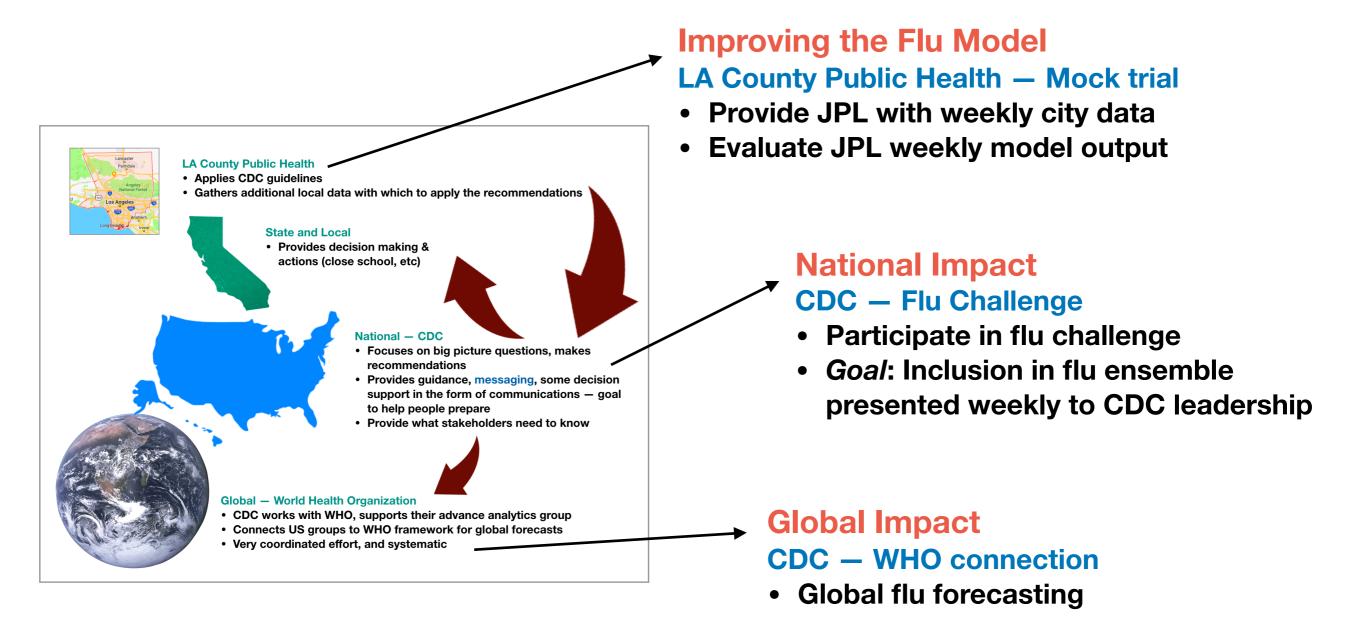
JPL flu team will send weekly flu forecasts in "mock trial" for evaluation during upcoming flu season

Center for Disease Control and Prevention

What we learned


- Since 2014-15 flu season flu forecasting officially in CDC decision support; "Surveillance data only tells what's happening, not where we're going"
- Seasonal onset, peak week, short term prediction
- Flu Challenge: 25 teams, 30 models
- Simple ensemble = blend of all models
- New ensemble = make historical forecast of 2011-2012 season to determine weighting. Only 6 models in New ensemble; Smart ensemble uses PDFs (too complicated for messaging at this time)
- Simple ensemble results shown weekly to CDC leadership
- The top performing model out-performs historic surveillance models EXCEPT for 4-week forecast
- 2017-18 season: First time CDC used forecasting in public communication (onset and peak). Provided same messaging to state & local agencies.

Meeting


Understand CDC process for flu decision support to improve utility of JPL model

Introduce JPL model

CDC Flu Challenge details

JPL, LA County & CDC — Pulling it all together

Creating contacts, establishing credibility

Applications - Good enough is ok

Los Angeles County Dept of Public Health

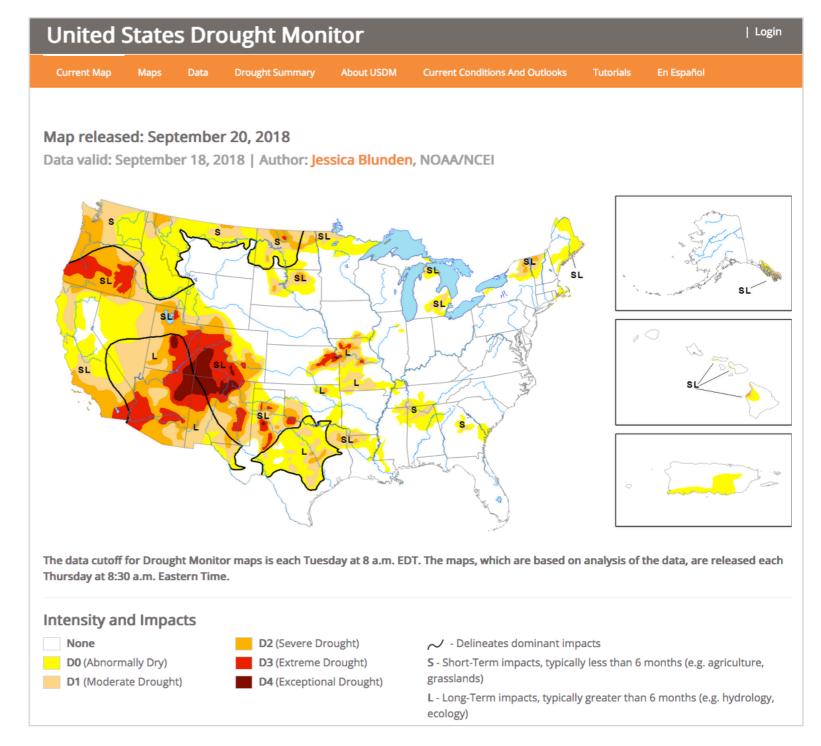
"The idea of trying to forecast flu, a novel way to forecast, is exciting. If it was reasonably accurate it could be exciting. We could have a press release, we could get people to get vaccinated."

Prabhu Gounder, Medical Epidemiologist
 Acute Communicable Disease Control, County of Los Angeles Public Health

Center for Disease Control and Prevention

WHEN DO YOU TRUST A FLU FORECAST?

"When a flu forecast has shown itself to be better than the historic forecast. When a flu forecast has done well over the last few years. Those are the types of messages we use...We're also looking at calibration. Is the flu group correct N% of the time? It gets us away from having to impose a threshold. If we waited for the perfect forecast, we wouldn't put anything out, we'd never publish anything."


Matthew Biggerstaff, Research Epidemiologist, Applied Research and Modeling Team
 Epidemiology and Prevention Branch, Influenza Division

 Centers for Disease Control and Prevention

AIRS & Drought

Stephanie Granger, Alireza Farahmand (JPL) Ali Behrangi (Univ. of Arizona)

- U.S. policymakers use USDM in drought discussions, drought relief allocations
- AIRS-derived drought products show early detection lead times of up to two months ahead of precip only
- Vapor Pressure Deficit,
 Relative Humidity, Surface Air
 Temperature
- July 2017 Probationary period begins: AIRS products in weekly USDM

AIRS & Drought – What's New

USDM - End of probationary period

- No formal USDM evaluation at probation end
- AIRS to remain in USDM product pool

Next Steps ———

Spatial statistical data fusion (SSDF) with AIRS & SNPP CrIS of T, RH, and VPD (Peter Kalmus, Amy Braverman JPL)

- Gridded (0.5 or 0.25 degrees), daily, day, night
- Demonstrably lower bias and variance (compared to ground truth from NOAA's Integrated Surface Database, ISD)
- Include uncertainty estimates produced by the SSDF
- Potential utility in fire, drought, and agriculture (TBD) applications

Explore NOAA STAR taking over production of VPD

Transition to CrIS

USDM targets – meetings at least 2x/year

AIRS & Wildfire

Fire Danger Assessment System

Using satellite observations to map global wildfire risk

JT Reager, Alireza Farahmand, Natasha Stavros (JPL) Jim Randerson (UCI)

- Build formal relationship between JPL and operational fire science community (for guidance/input)
- Create publicly available global firepotential data product
- Question: Can AIRS VPD-fire, and relationship between VPD, drought & fire contribute to determination of fire-risk?

AIRS & Wildfire Stakeholders

National Interagency Fire Council US Forest Service

- What's New

Status

- GACC-level fire risk model finished, paper submitted to GRL & under review
- Gridded 1/4 degree fire risk model finished. First draft of paper in review by co-authors, will submit soon

Plans

- Share products with stakeholders
- Provide gridded product to NIFC (org in charge of fire risk models)
- May provide gridded product to US Forest Service

Geographic Area Control Centers (GACCs)

United States divided into 11 geographic areas for incident management and mobilization of resources

AIRS & Volcanic Plume Detection Rapid Response

AIRS & Volcanic Plume Detection

Sharon Ray, Vince Realmuto, Eric Fetzer, Bjorn Lambrigtsen, Steve Licata, Paulo Penteado, Jeff Hall (JPL)

Unique contribution:

- 1. Can confirm eruptions in remote areas
- 2. Track long-lived ash clouds (days after eruption)

What we've completed:

- Triggering algorithm 1.0, web page, image products
- Automated rapid response system (dev site)
- Determined two key decision support pipelines

What's New —

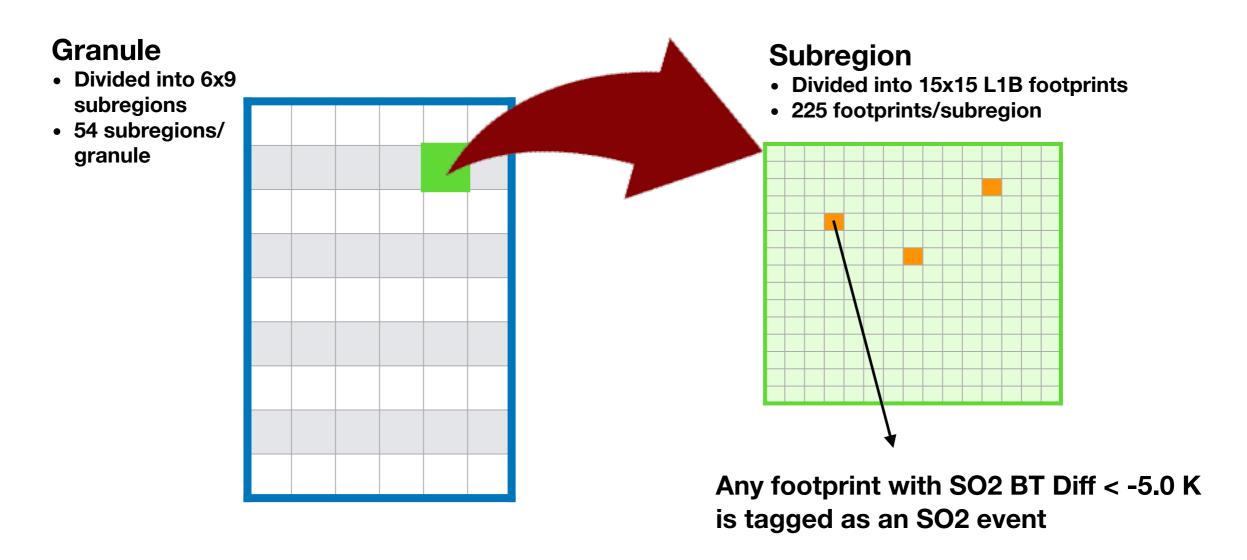
Improved detection algorithm

Problem - too many false positives

Improved triggering threshold plus additional threshold (mean SO2 BT DIFF)

Improved imagery

SO2 BT DIFF, Dust Score, Total Cloud Fraction, Cloud Top Height


Improved web page

Less cluttered, improved graphic elements

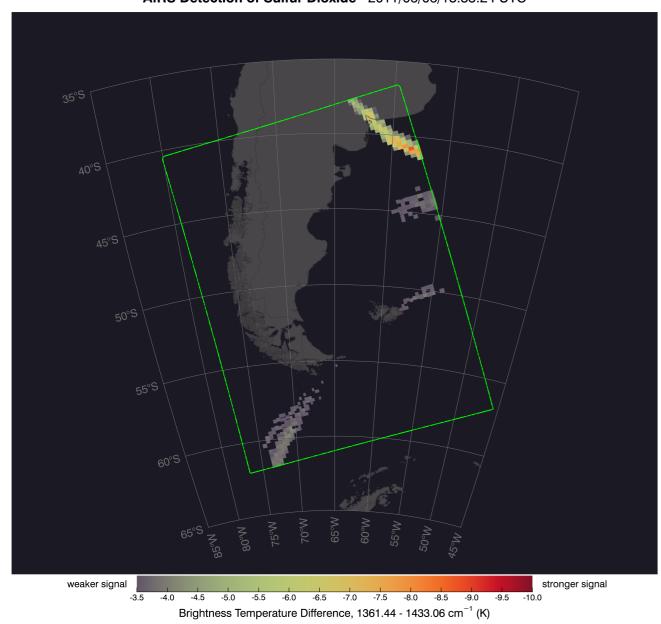
Reviewers site

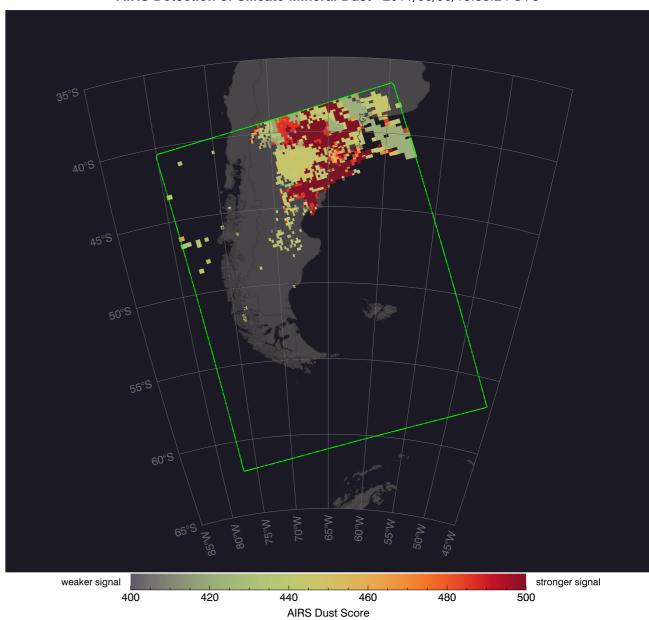
Seeded with select plume events

- 240 AIRS Level 1B granules examined daily in NRT
- Plume Event detection operates on a granule at the subregion level
- Subregion size determined smallest unit to capture a plume (~ 220km x 220km)

Plume Event Declared when two conditions met in subregion:

- 1. >= 20 SO2 events
- 2. Mean value of all SO2 events <= -5.5 K

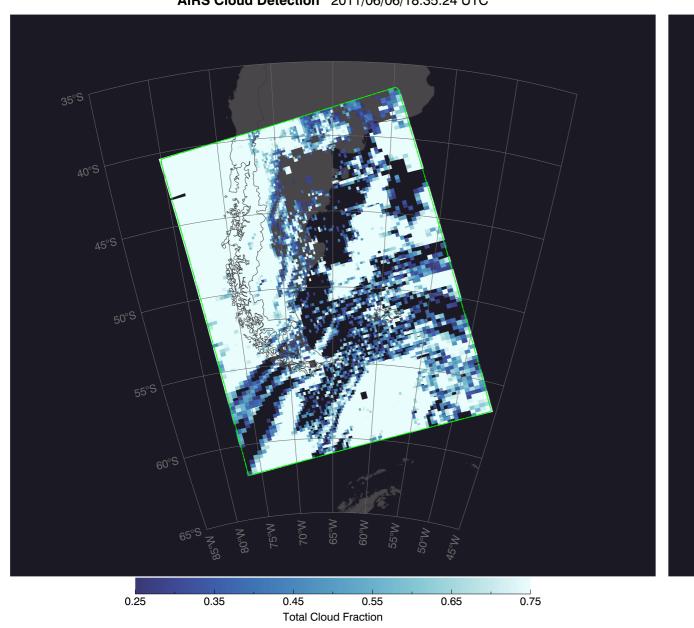

Puyehue Cordon Caulle Eruption, Chile

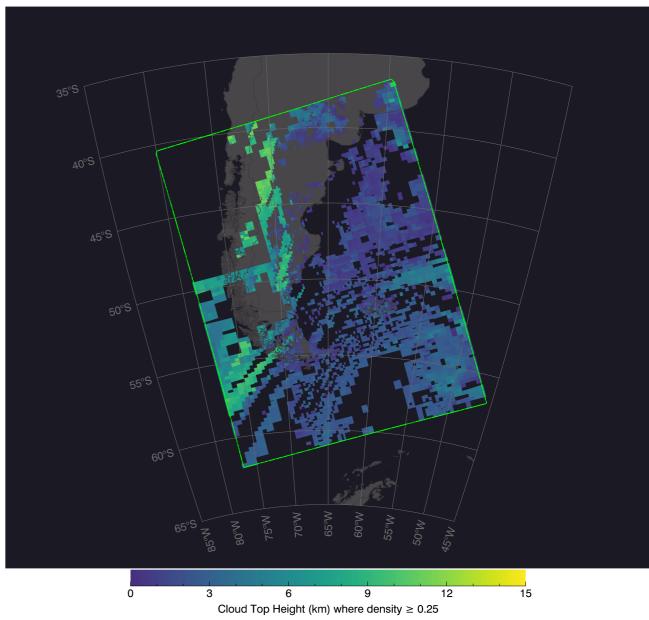

SO2 BT Difference

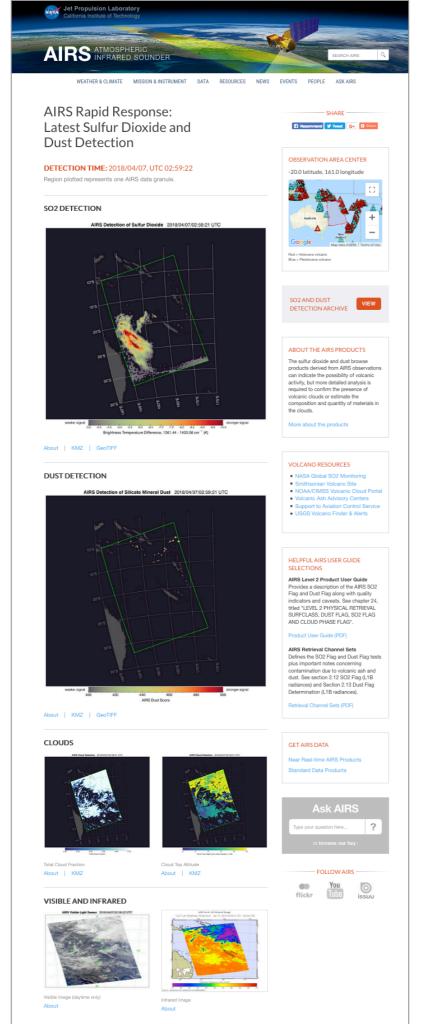
AIRS Detection of Sulfur Dioxide 2011/06/06/18:35:24 UTC

Dust Score

AIRS Detection of Silicate Mineral Dust 2011/06/06/18:35:24 UTC


Puyehue Cordon Caulle Eruption, Chile


Total Cloud Fraction


AIRS Cloud Detection 2011/06/06/18:35:24 UTC

Cloud Top Height

AIRS Cloud Detection 2011/06/06/18:35:24 UTC

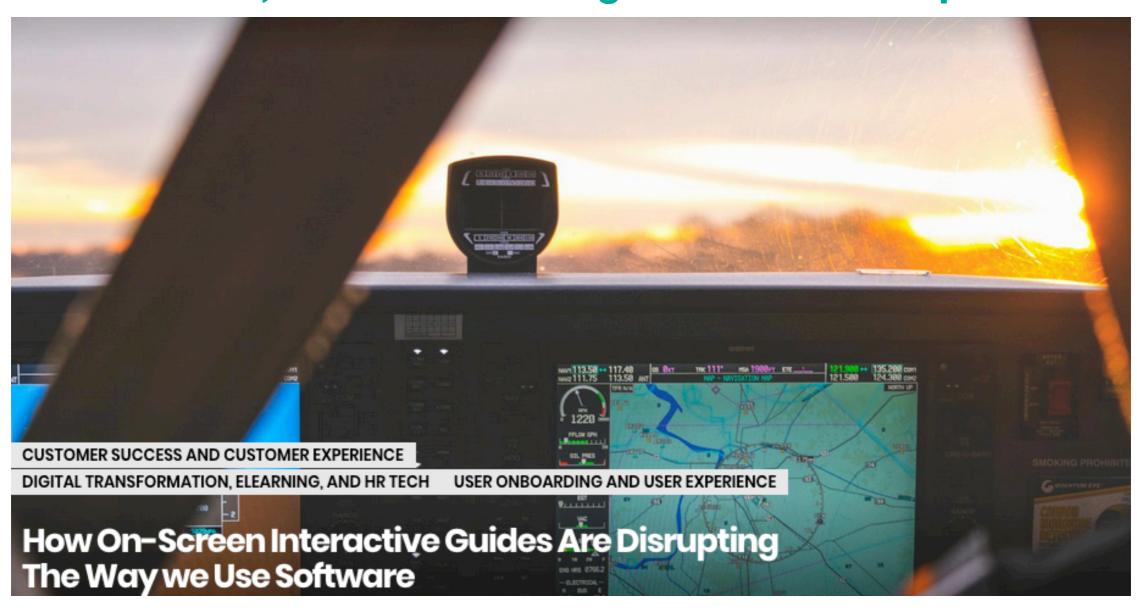
Plans

- 1. Volcano community review web page/products
- 2. Incorporate feedback
- 3. Add Worldview NRT upload
- 4. Awareness

SO2.nasa.gov
Earth Observatory
Volcano Clouds list
NASA Applied Sciences
NOAA/NESDIS Hazards
NASA Worldview "Themes" page

AIRS can do more:

- Provide detailed information on composition of volcanic plumes/clouds
- State of the atmosphere (temperature and water vapor profiles) over the lifetime of the plumes


Can improve trajectory/dispersion models used to forecast aviation hazards — analogous to hurricane trajectory models

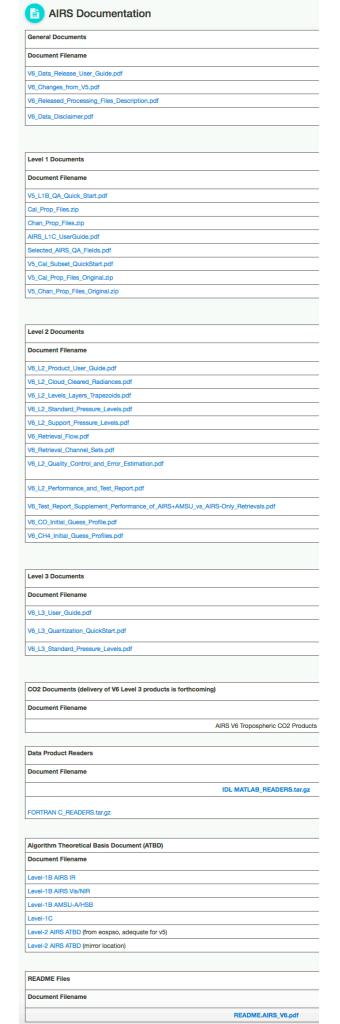
Benefits can be realized through retrospective studies of the AIRS archive

We are trying to motivate such studies by showcasing the AIRS products on the AIRS Volcano site

User Services — AIRS User Guides Upgrade

"User guides can and should be designed with the end user in mind, rather than being focused on the product."

User Guides Upgrade


Ed Olsen – Maintained through 1/2018 Re-evaluate content, organization, delivery

Existing Limitations

Not machine searchable Static presentation

Opportunity

"The negative factor of bombarding a busy end user with too much information has been turned into the positive of fulfilling a need." - Swipeguide.com, The Future of Instructions

Content, Organization

- Use existing guides as basis what do we have, what do we need?
- Determine pain points
- Mine AskAIRS archive
- Use cases
- Video, audio, graphics
- Partner with Doc Services, JPL UI/UX expert

New Format — The Digital User Guide

- Machine searchable
- Stats of user traffic: track usage, bounce rates, popular pages
- Link to other places in the DUG
- Include voice, imagery, animations
- Available through variety of devices
- PDF availability

Opportunity

- Good product documentation an important role in customer satisfaction
- Enhance the customer journey and build loyalty
- If we make AIRS data easier to use & understand > grow user base

Considerations

- Hosting
- Maintenance and updates
- GES DAAC

User Services

Upgrade User Guides > Upgrade Web Site

Data Users Stats, 2004-present

969 Current registered AIRS Data Users

894 Questions submitted via AskAIRS

1530 Questions submitted via email

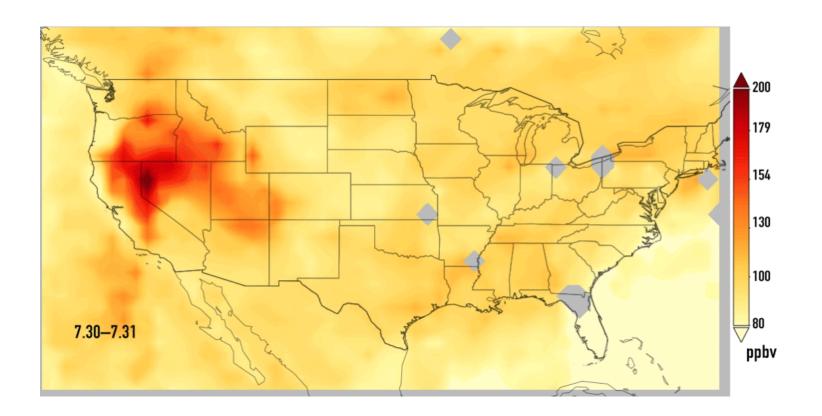
August 2018 Web Site Stats

3324 Users

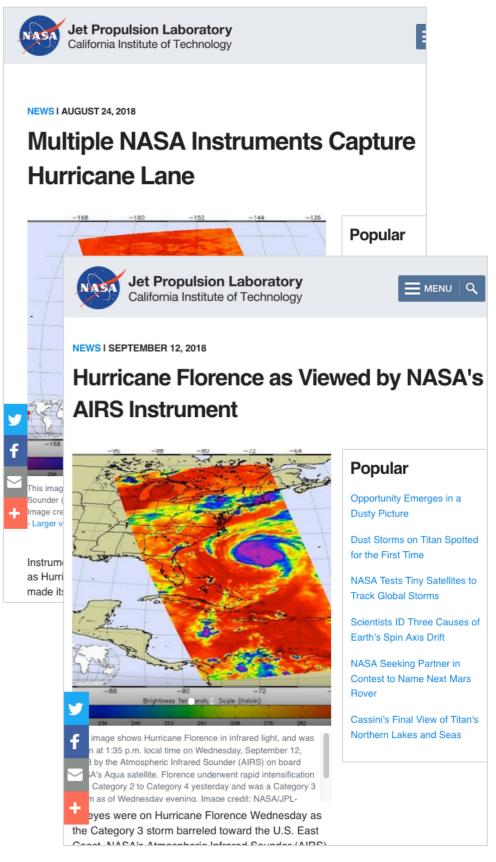
4084 Sessions

87% New Users

61% US, 3.9% China, 3.75% India


AIRS in the News

JPL News release


Carbon Monoxide from California Wildfires Drifts East

- Time series shows transport across US from 7/29 –8/7
- News release received excellent online coverage: USA Today, Newsweek, Google News, numerous media outlets
- Led to several media requests for interviews

https://www.jpl.nasa.gov/news/news.php?feature=7214

Hurricane News Releases

New Visualization GRAVITY WAVES Lori Perkins @ GSFC Scientific Visualization Studio

Tornado – Moore, Oklahoma in May 2013

- AIRS detects gravity waves in troposphere and stratosphere 12 hours before deadly EF5 tornado in Moore, Oklahoma
- Stronger waves detected 11 hours later
- Propagated through stratosphere and mesosphere until reaches ionosphere (traveling ionospheric disturbance)
- Tornado, gravity waves produced by longlived storm system

Data

- NAVSTAR/World-wide GPS Receiver Network/Total Electron Content (TEC) 5/19-23/2013
- Aqua/AIRS/Brightness Temperature Variance 5/20/2013 8:30, 19:30
- CPC (Climate Prediction Center) Cloud Composite 5/19-23/2013

"Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere" Irfan Azeem (ASTRA LLC), Jia Yue (Hampton Univ), Lars Hoffmann (Julich), Steven D. Miller (CIRA), William C. Straka III (CIMSS), Geoff Crowley (ASTRA LLC)

Multi-sensor observations of TIDs and GWs can provide a unique perspective on ionosphere-atmosphere coupling

Visualization Credits

Lori Perkins (NASA/GSFC): Lead Data Visualizer Eric Fetzer (NASA/JPL CalTech): Scientist

Sharon Ray (NASA/JPL CalTech): Project Support

Jie Gong (USRA): Scientist

Jia Yue (University of Maryland): Scientist

S. Irfan Azeem (National Science Foundation (NSF)): Scientist

Dong Wu (NASA/GSFC): Scientist

Tom Pagano (NASA/JPL CalTech): Project Support Carol Rasmussen (NASA/JPL CalTech): Writer

AIRS Level 2 NRT on Worldview!

https://worldview.earthdata.nasa.gov/

Teams: JPL, LANCE, GIBS, Worldview

Paulo Penteado JPL Jeff Hall JPL Feng Ding GSFC Matt Cechini GSFC Ryan Boller GSFC

New Visualization Algorithm

New Visualization Rules

Color bars to GIBS format

LANCE
Updates
AIRS
Processing
Pipeline

GIBS/Worldview
Updates
AIRS
Product Suite

Surface Air Temp
Surface Skin Temp
Surface Relative Humidity

Carbon Monoxide 500 hPa Methane 400 hPa

Relative Humidity 500 hPa Relative Humidity 700 hPa Relative Humidity 850 hPa Air Temperature 500 hPa Air Temperature 700 hPa Air Temperature 850 hPa

Sulfur Dioxide Brightness Temp Diff Dust Score Total Cloud Fraction Cloud Top Height

- 1. GIBS Replace AIRS NRT with Science Quality L2 data
- 2. Reprocess to create GIBS historic archive of AIRS products from BOM