CrIS Observations of Ammonia: Retrievals, Validation and Spatiotemporal Variability

Karen E. Cady-Pereira¹, Mark W. Shephard², Shailesh K. Kharol², Enrico Dammers², Cynthia Whaley², Cristen Adams², Jesse Thompson², Nolan Dickson², Ed Hare², Matt Alvarado¹ and Chantelle Lonsdale¹

¹Atmospheric and Environmental Research (AER), Lexington, Massachusetts, USA ² Environment and Climate Change Canada (ECCC), Toronto, Ontario, Canada

Why are we interested in measuring ammonia (NH₃)?

- Global (NH₃) emissions are forecast to increase:
 - Demand for more and better food in developing countries
 - More livestock production
 - Greater use of fertilizer
- From 1990 to 2015 Canada's ammonia emissions have increased by 22%, driven mainly by crop production
- SO_x, NO_x in general have been decreasing due to increased emission controls
 - Catalytic converters on vehicles (NOx)
 - Scrubbers installed in power plant stacks (SOx)

Ammonia (NH₃) is the only PM_{2.5} precursor that is both currently increasing and expected to continue to increase in the future

Cross-Track Infrared Sounder (CrIS)

- Launched in fall 2011 on S-NPP
- Also now flying on JPSS1: three more to follow through 2038
- Spatial Resolution = 14 km (diameter)
- ~1:30 and 13:30 overpass: ideal for NH₃
- Global spatial coverage
- Spectral Resolution (cm⁻¹) @ 970 cm⁻¹ = 0.625
- Excellent noise
 - NEdT ~0.05K at 270K
 - ~4x better noise than similar sensors
- TES-like sensitivity with IASI/AIRS-like spatial coverage

Cross-track Infrared Sounder (CrIS) satellite observations of tropospheric ammonia

M. W. Shephard¹ and K. E. Cady-Pereira² ¹Environment Canada, Toronto, Ontario, Canada ²Atmospheric and Environmental Research, Inc., Lexington, MA, USA

Correspondence to: M. W. Shephard (mark.shephard@ec.gc.ca)

Atmospheric -

Measurement

Techniques 8

CrIS Fast Physical Retrieval (CFPR) Algorithm for NH₃

- developed in collaboration between Canada (ECCC) and USA (AER)
- TES heritage
- optimal estimation (Rodgers, 2000) implemented in IDL

- Detectability is ~ 0.25 ppbv under ideal conditions
- Thermal contrast plays an important role

Oer

For more details see: Shephard M.W. and K. E. Cady-Pereira, AMT, 2015

CrIS Fast Physical Retrieval (CFPR) for NH₃

- CrIS most sensitive to NH₃ between 950 and 700 mb (~0.5 to 3 km)
- Sensitivity varies from profile-to-profile
- Surface retrieved values are driven by sensitivity in boundary layer
- ~1 piece of information:DOFS~1

Environment and Climate Change Canada

For more details see: Shephard M.W. and K. E. Cady-Pereira, AMT, 2015

How do CrIS NH₃ retrievals compare with other measurements?

- CrIS: an instantaneous profile over a footprint at least 14 km in diameter
- Most ground measurements: point data at the surface
 - Often a bi-weekly average:
 - Ammonia Monitoring Network (AMoN)
 - Canadian Air and Precipitation Monitoring Network (CAPMoN)
- Ground-based Fourier Transform InfraRed (FTIR)
 - Profile and total column measurements
 - Instantaneous cloud-free sampling (middle of the day)
- Aircraft: profiles of point data
 - DISCOVER-AQ campaigns in California and Colorado
- All measurements come with large uncertainties:
 - NH₃ is sticky, highly reactive and has high spatial and temporal variability
 - validation is not straightforward

Validation: Uncertainty in aircraft profiles

Sample profiles from the California DISCOVER AQ campaign January-February 2013

- Picarro slow response leads to hysteresis:
 - Overestimates on ascent and underestimate on descent
- PTR-ToF-MS signal is very noisy

Initial assessment shows that the satellite and AMoN surface obs agree well despite sampling differences

• Correlation of 0.76

Saer

• Mean difference of +0.4 ppbv (~+15%)

Shailesh Kharol et al., in preparation, 2018

CrIS and ground-based FTIR

- Total column comparisons with ground-based Fourier Transform InfraRed (FTIR) obs. at several locations globally
 - Bremen, Germany; Toronto Canada; Boulder USA, Pasadena USA, Wollongong, Australia; Lauder, New Zealand, Mexico City, Mexico
- Results look good with mean relative column differences of ~0 to -5% for the medium to large values

Oer

Enrico Dammers et al., Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR, Atmos. Meas. Tech., 10, 2645-2667, https://doi.org/10.5194/amt-10-2645-2017, 2017.

Satellite Validation: Ground-based FTIR profiles

Profile comparisons done by applying the FTIR instrument operator

 $X_{est} = X_a + AVK * (X_{true} - X_a)$

Saer

CrIS during DISCOVER-AQ California 2013

What does NOT applying the instrument operator tell you?

CrIS NH₃ North America 2013 Monthly Averages: April to October

White regions indicative of values near detection limit Cold background surface Captures expected temporal and spatial distributions of ammonia

- Spring fertilizer applications (May over Canada)
- Episodic events (e.g. Northern forest fires in middle of summer)

Satellite data over Fort McMurray forest fires: Daily values in May 2016

<u>VIIRS</u>

Infrared: Fire Detection (red) Visible : Cloud (White), Smoke (blue/gray)

CrIS

Infrared: Ammonia (NH₃)

Surface NH₃ during SENEX Campaign

Satellite derived dry deposition flux of nitrogen from ammonia (NH₃)

NH₃ Emissions from Wildfires Fort McMurray : May 2016

Operational algorithm currently under implementation at the SNPP SIPS

- ESSPA software: FORTRAN retrieval code with OSS as forward model
- Same a priori profiles/constraints/selection as CFPR

Ongoing Work

- Add FOV surface temperature retrieval to ESSPA processing for NH3
- Averaging kernel and error covariance
 - Add output to ESSPA
 - Investigate options for compressed storage
- Validate ESSPA product
 - Against DISCOVER-AQ data in California and Colorado
 - Against fire data from WE_CAN
 - Determine if fire scenes need different a priori
- Use CrIS NH₃ over India and China to better constrain emissions over these regions

Model Evaluation: Bidi Flux Example – Sep 3, 2013

Validation: Point vs Regional Spatial Sampling

Should we expect a 1:1 comparison of in-situ point sources and satellite footprint surface obs. of NH₃?
Use high-resolution GEM-MACH model simulations to investigate the impact of sampling NH₃ surface fields over AB and SK with different spatial sampling resolutions.

Larger spatial sampling @12kmx12km (similar to satellite) compared with smaller 2.5km x 2.5km (closer to point observations) measurements will tend to overestimate small values and underestimate larger values under inhomogenous conditions even if both measurements were perfect.

CrIS North America Warm Season Average 2013

