

18 Years of MOPITT Carbon Monoxide Data: Selected results, validation and extending the record

> H. Worden (NCAR) and the NCAR MOPITT team Dejian Fu, Kevin Bowman, <u>Vivienne Payne (JPL)</u> Karen Cady-Pereira (AER)

### MOPITT Multispectral CO Observations



MOPITT uses gas filter correlation radiometry (GFCR) to measure TIR and NIR CO absorption

### MOPITT near surface CO Observations



Worden et al., JGR, 2010



#### CO trends



#### MOPITT CO Profiles: Asian Monsoon and 2015 Indonesian Fires

Expected high CO in UTLS due to Asian Monsoon circulation (e.g., Park et al., 2009)





# Trends in CO Emissions using top-down estimates constrained by MOPITT



Jiang et al., ACP, 2017

Zheng et al., ERL, 2018

#### **MOPITT** Validation and Intercomparisons

### Comparisons to in situ NOAA data: Significant improvement for V6N to V7N (Deeter et al., AMT, 2017)



MOPITT V8 (in progress) will address bias drift in UT vs. LT for profiles and latitude bias due to water vapor dependence.

### Comparisons with IASI



#### **MOPITT vs. IASI**

From George et al., AMT, (2015):

CO column in 10<sup>18</sup> mole./cm2 for 15-day averages in selected regions.

Error bars = 1 st. dev.

Areas with significant differences due to different winter sensitivity for TIR measurements

### Comparisons with TROPOMI



Initial comparison of MOPITT and TROPOMI total col. CO (25 km coincidence, day only)

#### MOPITT and CrIS observations of 2017 Thomas Fire





MOPITT TIR Near-Real-Time (NRT) data in WORLDVIEW: https://worldview. earthdata.nasa.gov

## Single-Pixel SNPP-CrIS observations of 2017.12.12 (MUSES algorithm from JPL: Fu et al., AMT, 2016)



## Extending the MOPITT CO record with SNPP/CrIS and S5P/TROPOMI

|                       | Terra/MOPITT                                                          | SNPP/CrIS                                                                               | S5P/TROPOMI                   |
|-----------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|
| Instrument type       | Gas Filter Correlation<br>Radiometer (GFCR)                           | Fourier Transform<br>Spectrometer (FTS)                                                 | Imaging Spectrometer          |
| Launch date           | December 1999                                                         | October 2011                                                                            | October 2017                  |
| Orbit<br>(sun-synch.) | 705km, 10:30 LST (desc.)                                              | 828 km, 13:25 LST (asc.)                                                                | 824 km, 13:30 LST (asc.)      |
| Pixel size; Swath     | 22km x 22km; 640 km                                                   | 14 km diam.; 2200 km                                                                    | 7km x 7km; 2600 km            |
| Global coverage       | ~ 3 days                                                              | ~1 day                                                                                  | ~1 day                        |
| CO spectral sampling  | 0.04 cm <sup>-1</sup> (eff. TIR)<br>0.25 cm <sup>-1</sup> (eff. SWIR) | 2.5 cm <sup>-1</sup> (normal mode)<br>0.625 cm <sup>-1</sup><br>(full res. > Dec. 2014) | 0.458 cm <sup>-1</sup>        |
| CO spectral range     | 2140-2192 cm <sup>-1</sup><br>4265-4305 cm <sup>-1</sup>              | 2155-2210 cm <sup>-1</sup><br>(TIR only)                                                | (SWIR only)<br>4277-4303 cm⁻¹ |
| NEDT@270K             | 0.05K/channel                                                         | 0.1K/spectral sample (full res.)                                                        | SWIR min. SNR:<br>100-120     |

### Extending the TIR-only CO record with SNPP/CrIS

#### CrIS CO Tropospheric Column



#### • August 5, 2017

x 10<sup>18</sup>/cm<sup>2</sup>

-0.5

 The agreement between MUSES CO data and NOAA RAQMS model predicted CO fields

#### RAQMS after applying CrIS Ak RAQMS without applied CrIS Ak



CrIS - RAQMS\_AkApplied







RAQMS model simulations are courtesy of B. Pierce, NOAA

| Applying MUSES CrIS CO Observation    | Correlation<br>Coefficient | Mean Diff         |     | RMS               |      |
|---------------------------------------|----------------------------|-------------------|-----|-------------------|------|
| Operator to RAQMS Predicted CO Fields |                            | x10 <sup>18</sup> | %   | x10 <sup>18</sup> | %    |
| With applying AK to RAQMS CO data     | 0.68                       | -0.15             | 6.9 | 0.27              | 11.1 |
| Without applying AK to RAQMS CO data  | 0.40                       | -0.15             | 6.6 | 0.45              | 25.7 |

## Extending the TIR+NIR MOPITT CO record with SNPP/CrIS and S5P/TROPOMI

Averaging Kernels From Fu et al., AMT, 2016



Simulated retrievals of surface layer CO (0-2km)

### Conclusions:

- MOPITT has the longest satellite record of global CO.
- Multispectral observations allow sensitivity to surface layer CO in some conditions over land.
- Except for 2015 El Niño related fires, global CO emissions are mostly decreasing for both fire and fossil fuel combustion.
- Combining SNPP/CrIS and S5P/TROPOMI observations could potentially extend the MOPITT record of TIR+NIR multispectral observations

#### MOPITT GFCR Multispectral CO observations

GAS FILTER CORRELATION RADIOMETER (GFCR) CONCEPT

![](_page_16_Figure_2.jpeg)