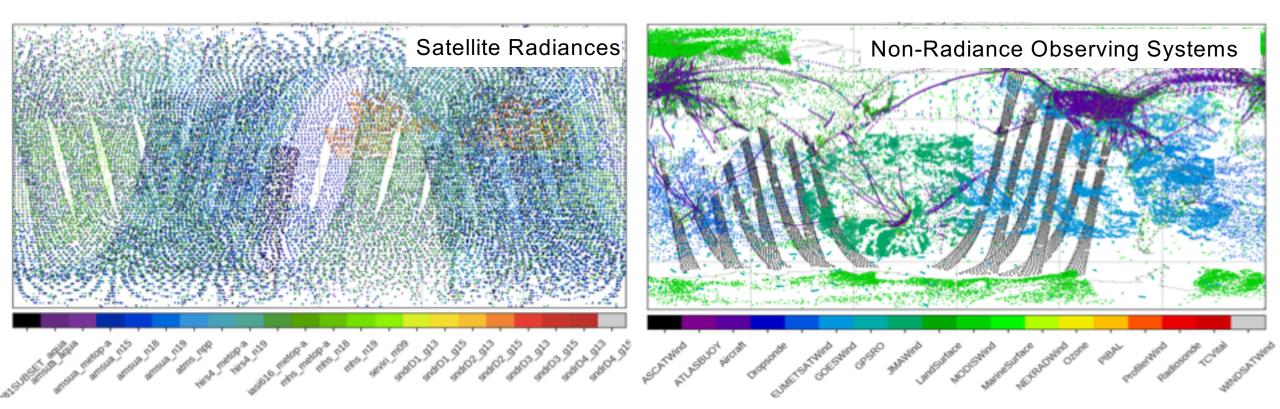


Efficient Data Selection Method for NWP Using EFSO

Tse-Chun Chen Eugenia Kalnay University of Maryland Acknowledgements to: Daisuke Hotta, Jim Jur Guo-Yuan Lien, Yoichi Ota, Krishna Kumar, Jordan Alpert, and Cheng Da

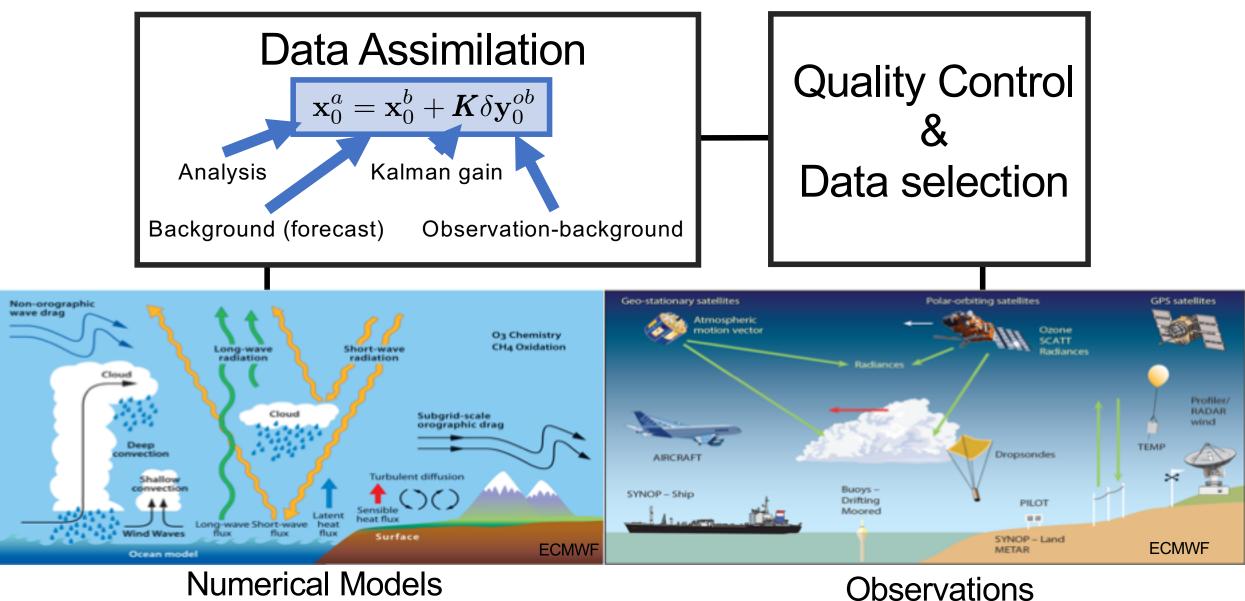
Massive Volume of Data



- Millions of observations are assimilated every 6 hours.
- New systems with higher spatial, temporal, and spectral resolution. e.g. Next generation GOES, Himawari and Phase Array Weather Radar

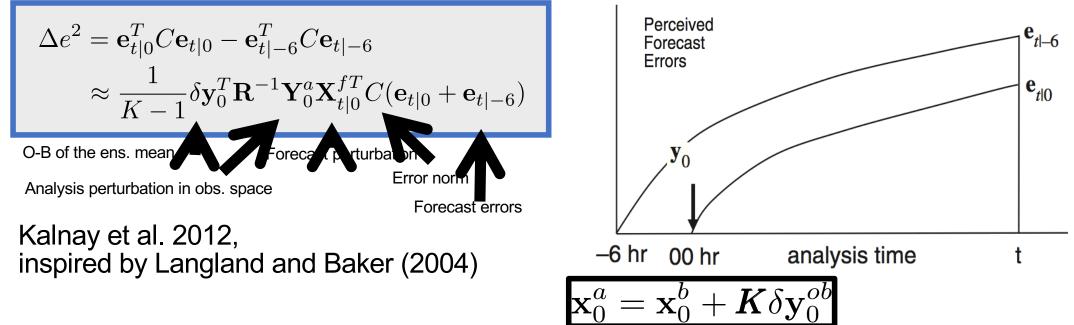
How to make use of these data effectively?

Effective use of observations (in NWP)



Numerical Models

Ensemble Forecast Sensitivity to Observation (EFSO)



- A linear mapping from error changes to each individual observation.
- Most of the components are readily produced by DA process.
- Economical and efficient for impact evaluation.
- Negative means Beneficial observation, Forecast error reduction
- Positive means Detrimental observation, Forecast error increase

Efficiently quantifies individual observational impact on forecasts.

1. Data Monitoring and Selection

- Efficient EFSO computation allows for **near real-time monitoring** of observational impact on the forecasts.
- Long record (1 month) of EFSO impact reveals detrimental subset of the observations and can improve existing QC decisions and data selection.
- Accelerates designing QC and selection for new instruments (Lien et al. 2017)

2. Proactive QC

- Flow dependent QC to avoid forecast skill dropouts (Hotta et al. 2017)
- Rejects observations at each DA cycle based on **immediate** EFSO impact.

Naively assimilating all observations is expensive and very likely degrades analysis and forecast quality.

Data selection considers:

- Data Quality (bad observations)
- Model Representativeness (imperfect model)
- Redundant Information (overwhelmingly dense observations)
- Information content (insignificant observation)

Data selection ensure assimilating most useful observations.

Data Selection Methods

Physics-based:

 Requires comprehensive knowledge of the physical properties of the observation and the corresponding model representation.
 (e.g. Gambacorta and Barnet 2013)

OSEs/OSSEs-based:

• Straight-forward approach by directly comparing twin experiments with and w/o the targeted observations. Computationally very expensive.

Statistics-based:

- Degrees of Freedom of Signal (DFS or Information Content) measures the expected influence of each observation in DA analysis (e.g. Rabier et al. 2002, Rodgers 1996).
- These methods are all **complementing each other** and play their own roles in data selection process.

We propose adding (E)FSO-based selection.

EFSO and Degree of Freedom of Signal (DFS)

	Analysis (t=0)	Forecast (t=t')	
DFS	$oldsymbol{S}^a = rac{\partial \mathbf{y}_0^a}{\partial \mathbf{y}_0^o} = [oldsymbol{H}oldsymbol{K}]^T pprox rac{1}{K-1} oldsymbol{R}^{-1} oldsymbol{Y}_0^a oldsymbol{Y}_0^a T$ (Liu et al., 2009)	$oldsymbol{S}^f = rac{\partial \mathbf{y}^f_t}{\partial \mathbf{y}^o_0} pprox oldsymbol{K}^T oldsymbol{M}^T oldsymbol{H}^T$ (Chen et al. 2018)	
	$\Delta e^2 \approx \frac{1}{K-1} \delta \mathbf{y}_0^{oT} \mathbf{R}^{-1} \mathbf{Y}_0^a \mathbf{X}_0^{aT} \mathbf{M}^T \mathbf{C} (\mathbf{e}_{t 0} + \mathbf{e}_{t -6})$		
EFSO	$\Delta e^2 \approx -\delta \mathbf{y}_0^{oT} \mathbf{S}^a \mathbf{S}^{aT} \delta \mathbf{y}_0^o$ $\approx -\delta \mathbf{y}_0^{aT} \delta \mathbf{y}_0^a$	$\Delta e^2 \approx -\delta \mathbf{y}_0^{oT} \mathbf{S}^f \mathbf{S}^{fT} \delta \mathbf{y}_0^o + \delta \mathbf{y}_0^{oT} \mathbf{S}^f \mathbf{H} (2\mathbf{e}_{t 0})$	
	$\delta \mathbf{y}_0^a = \boldsymbol{H} \delta \mathbf{x}_0^a = \boldsymbol{H} \boldsymbol{K} \mathbf{y}_0^o = \boldsymbol{S}^{aT} \delta \mathbf{y}_0^o$	$\delta \mathbf{y}_t^f pprox oldsymbol{H} oldsymbol{M} \delta \mathbf{x}_0^a pprox oldsymbol{H} oldsymbol{M} oldsymbol{K} \mathbf{y}_0^o$	

EFSO impact:

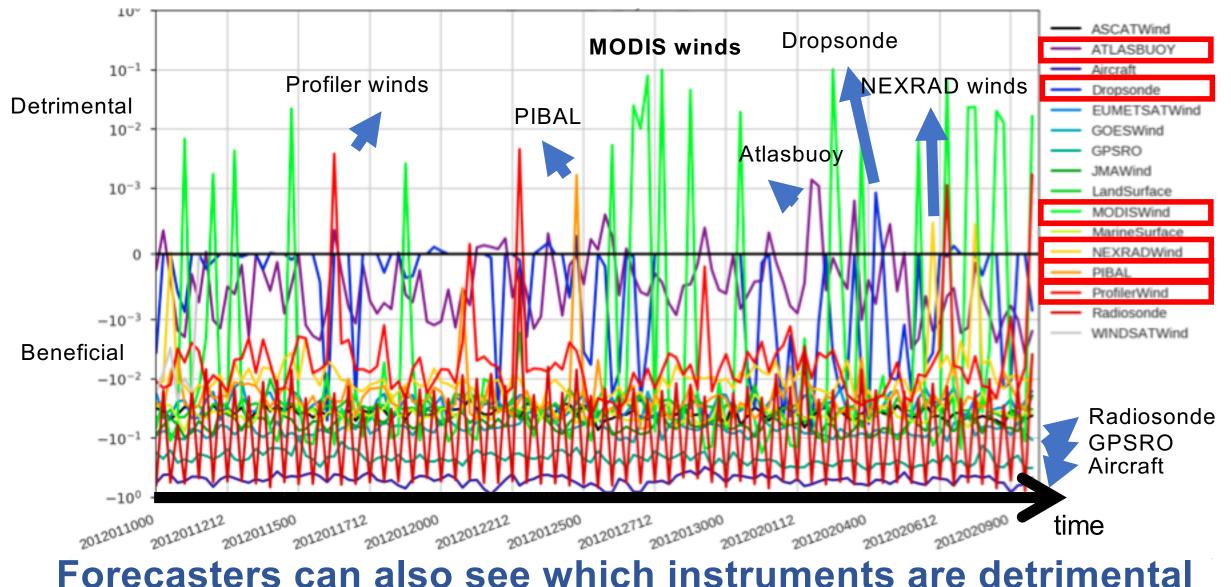
- includes **DFS** (gradient / sensitivity; another view of gain matrix)
- computes the actual impact on analysis and on forecast
- identify the **sign of impact** (detrimental or beneficial)

Experimental setup for data monitoring & selection

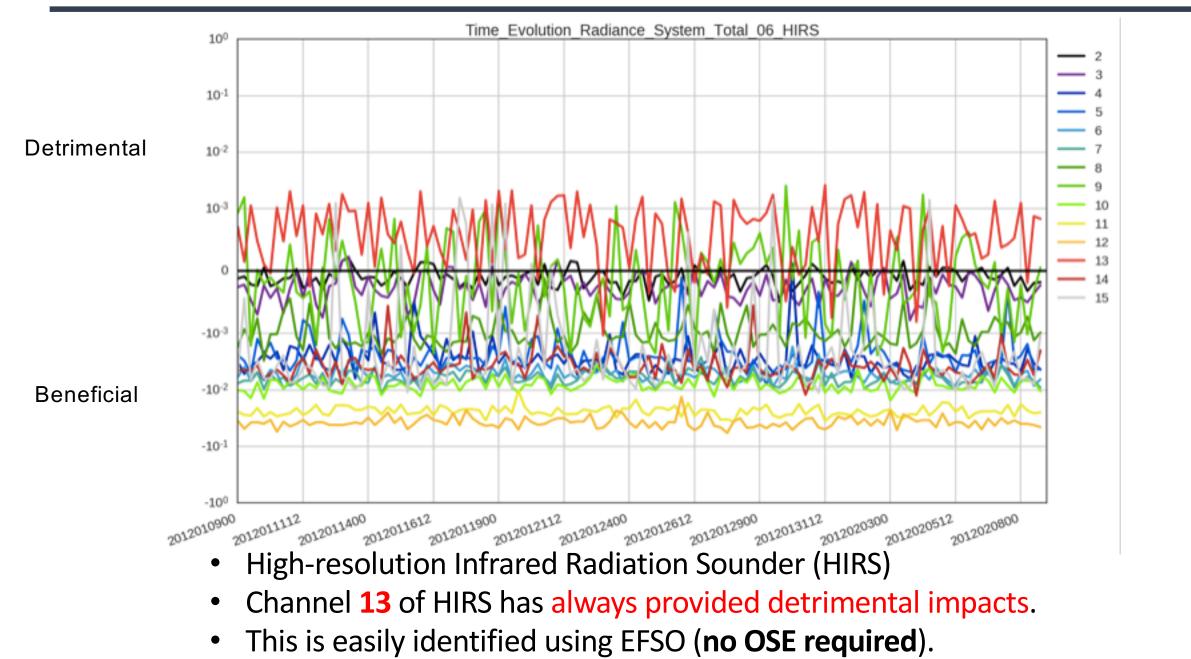
Period (1 month)	Jan/10/2012 00Z – Feb/09/2012 18Z
Model	GFS T254/T126 L64
DA	LETKF/3D-Var Hybrid GSI v2012
Localization cut-off length	2000 km/ 2 scale heights
Error norm	Moist total energy (MTE)
	$MTE = \frac{1}{2} \frac{1}{ S } \int_{S} \int_{0}^{1} \{ (u'^{2} + v'^{2}) + \frac{C_{p}}{T_{r}} T'^{2} + \frac{R_{d}T_{r}}{P_{r}^{2}} p_{s}'^{2} + w_{q} \frac{L^{2}}{C_{p}T_{r}} q'^{2} \} d\sigma dS$

Powerful QC monitoring for every system!

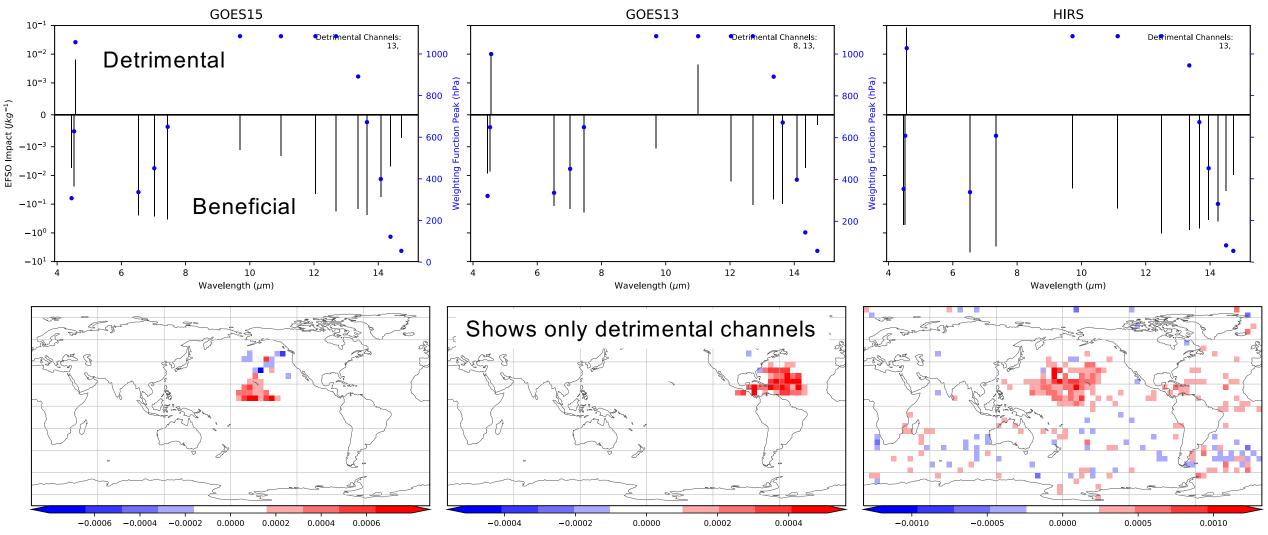
06hr System Total Impact (J/kg)



Radiance Channel Selection: HIRS

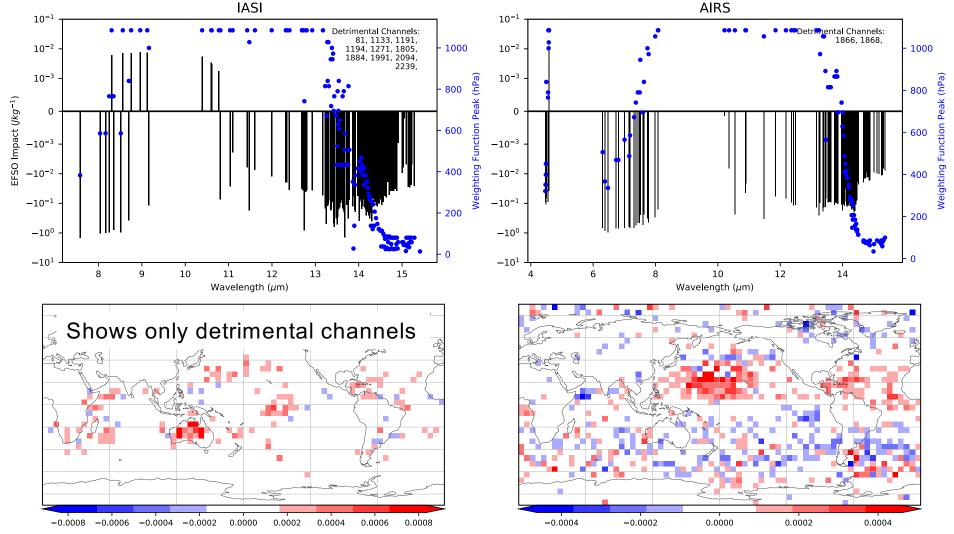


Multi-channel instruments: GOES sounder, HIRS



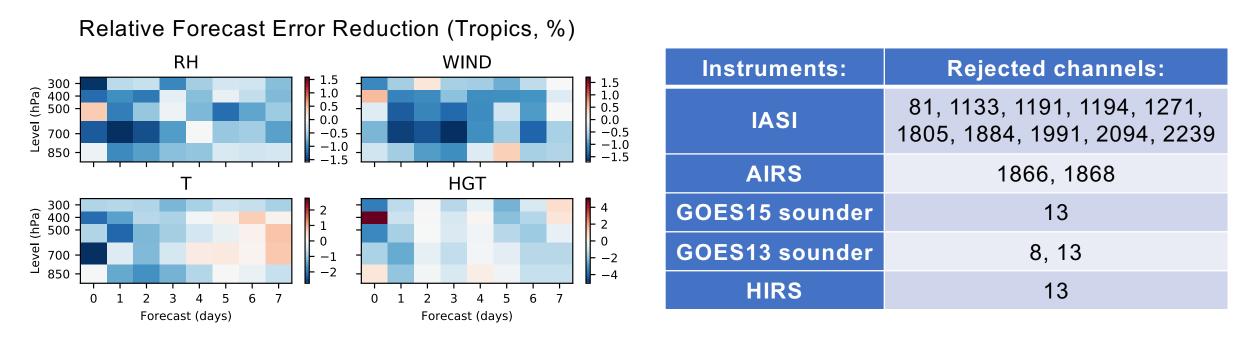
- Channel 8 (11.03 um), 13 (4.57 um): sensitive to surface and low-level temperature.
- Map shows the 2 channels are detrimental in tropical Pacific and Atlantic.

Hyperspectral Instruments: IASI, AIRS



- Efficient channel-wise impact evaluation even for hyperspectral instruments.
- Detrimental impact from Australia and tropical oceans.

Forecast performance of EFSO-based selection



- The detrimental impact is mainly from the tropical regions.
- Simply rejecting 16 channels out of hundreds improves the monthly mean tropical forecast by 1%

Rejecting the detrimental channels improves tropical forecasts

Proactive Quality Control (PQC)

- Fully **flow-dependent QC** scheme pioneered by Ota et al. (2013) and Hotta et al. (2017) to alleviate forecast skill dropout issue.
- PQC rejects EFSO identified detrimental observations in **each DA cycle**.
- Requires next analysis for EFSO computation.
- Long forecast benefits only from the accumulation of cycling PQC improvement in operation.
- We test PQC in **GFS**.

PQC rejects observations based on the immediate EFSO impact.

Adapted from Hotta 2017

FCS

ANL

T=00

ANL

T=-06

EFSC

FCS

FCS

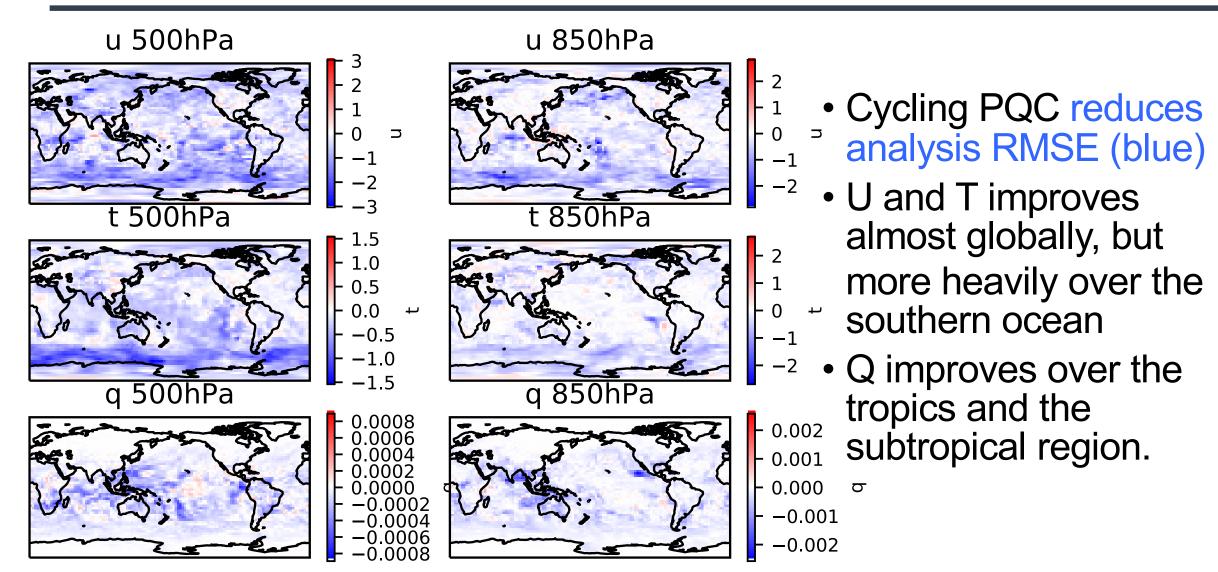
ANL

T=06

Experimental setup for GFS-LETKF (Lien, 2015)

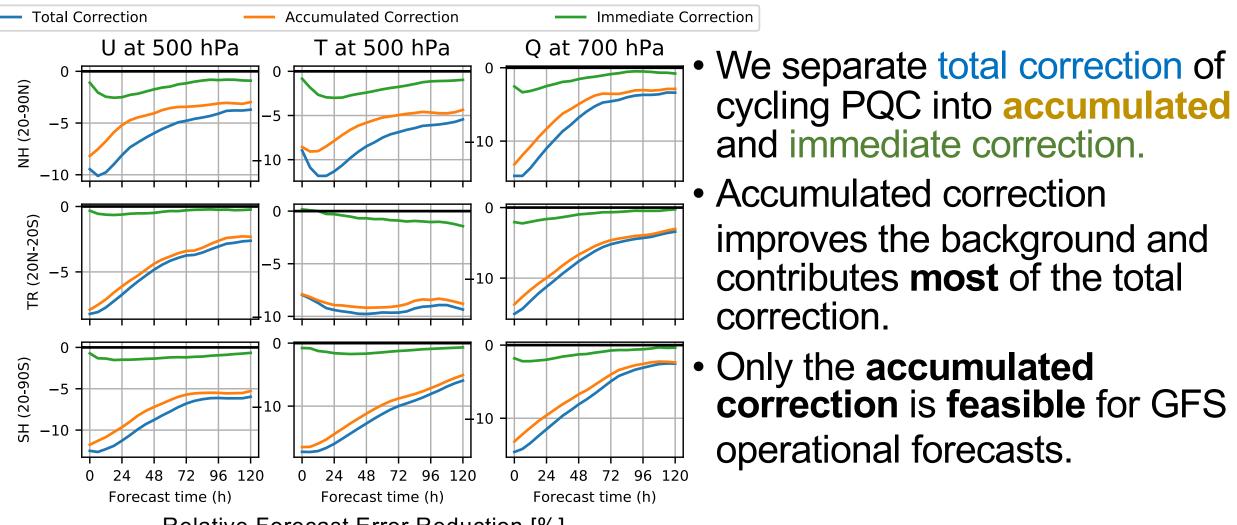
Period (~1 month)	Jan/01/2008 00Z – Feb/06/2008 06Z (5 days for DA spinup)
Model	GFS T62 L64
DA	LETKF with 32 ensemble size
Observation	prepBUFR data from NCEP
Localization	Horizontal: 500 km Vertical: 0.4 scale height
Inflation	RTPP (Zhang 2004) + adaptive inflation (Miyoshi 2011)
Verifying truth	NCEP Climate Forecast System Reanalysis (CFSR)

Cycling PQC reduces the analysis error



Analysis is improved globally across every variable!

Immediate and Accumulated impact of cycling PQC



Relative Forecast Error Reduction [%]

Most benefit comes from the accumulated correction!

EFSO-based Data Selection

- Agile data monitoring and selection for every observing systems
- Can deal with massive (and increasing) amount of data
- Dropping just few channels improves the forecast by 1%

Proactive QC

- PQC improves the analysis and the forecast across variables over the globe.
- Accumulated corrections by cycling PQC dominate the total correction, indicating that the latest forecast will be improved by cycling PQC.

EFSO-based Data Selection

- Perform iterative EFSO-based radiance channel selection.
- Bring back the innocent (beneficial yet discarded) channels to better utilize the data.
- Integrate EFSO into OSSE/OSE in collaboration with Drs. Robert Atlas, Lidia Cucurull, and Sean Casey (QOSAP team)

Proactive QC

- Test PQC with more close-to-operation environment: e.g. 4DEnVar vs. pure LETKF, more realistic model resolution, include radiance data, etc.
- Alleviate GFS forecast skill dropout problem with Jordan Alpert and Krishna Kumar (GFDPT team)

