

Using Microwave Sounders to Probe the PBL

Bjorn Lambrigtsen

Jet Propulsion Laboratory, California Institute of Technology

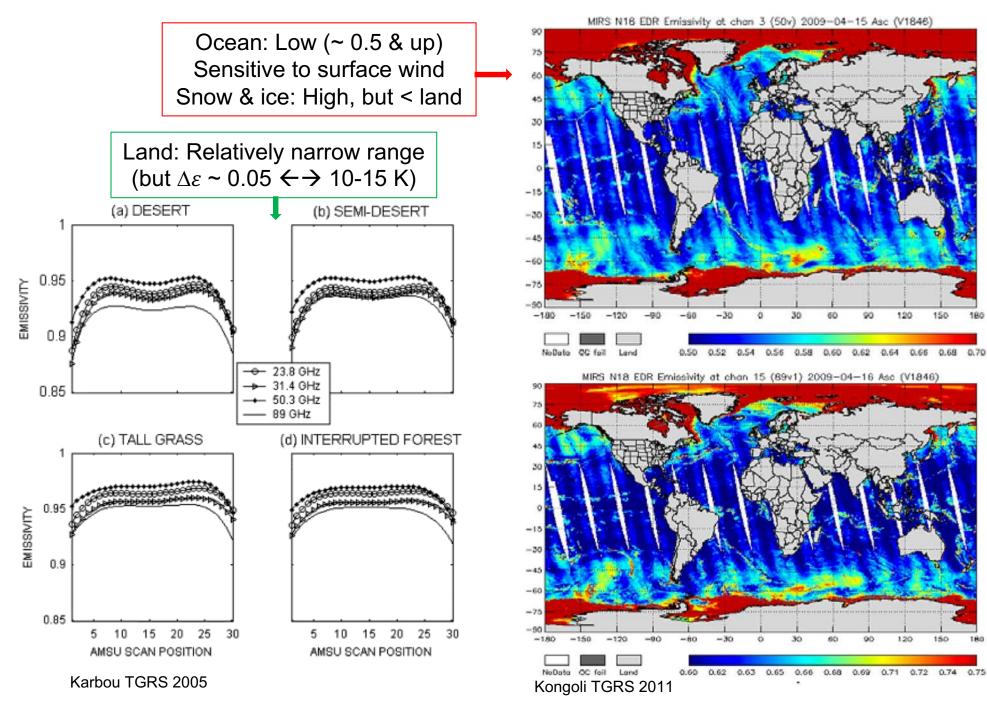
NASA Sounder Science Team Meeting Greenbelt, October 1-5, 2018

Copyright 2018 California Institute of Technology. Government sponsorship acknowledged

The PBL sounding challenge

Prevailing cloudiness

- IR sounders can only sample the "clear air" outside the clouds
 - Cloud-cleared: Soundings from *clear sky* in partly cloudy regions
 - No idea what T & q is *inside/below* the clouds ← But see below
 - However: IR sounders have high V-res & precision
- Therefore: Need MW sounders
 - Look through clouds & precip: Get soundings *inside and below* clouds & precip
 - Large thermal contrast w/surface => High sensitivity to near-surface atmosphere
- Combined IR+MW: Best of both worlds
 - Est. q in/below clouds? \rightarrow q(clouds) \approx q(MW) q(IR)


Vertical resolution of MW sounders

- More channels needed \rightarrow Hyperspectral
- Need to keep hyperspectral noise limited

Surface emissivity issues

- Wide range of values: Need good "first guess", solve for it
- Best: Polarimetric (measure both H and V polarization)
 - Conical scanner?

Wide range of emissivities

Microwave sounders at JPL: HAMSR

Bjorn Lambrigtsen PI

Wt-func. Peak

[mb or mm]

Sfc/[30 mm]

Surface

Surface

1000 mb

750 mb

400 mb

250 mb

150 mb

80 mb

40 mb

Sfc/[100 mm]

Surface

1000 mb

750 mb

400 mb

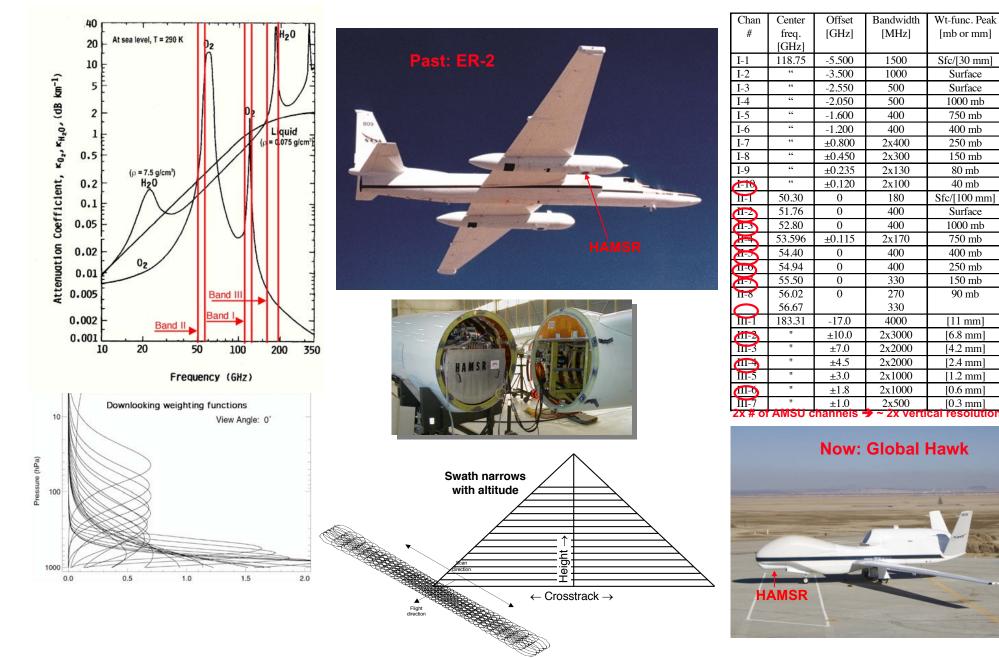
250 mb

150 mb

90 mb

[11 mm]

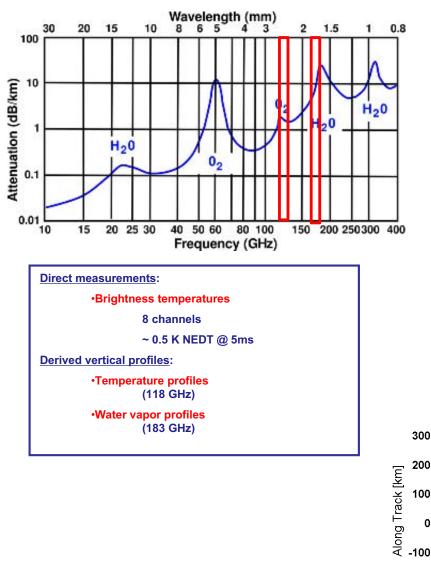
[6.8 mm]


[4.2 mm]

[2.4 mm]

[1.2 mm]

[0.6 mm]


[0.3 mm]

Microwave sounders at JPL: MASC

Sharmila Padmanabhan PI

2 Spectral bands

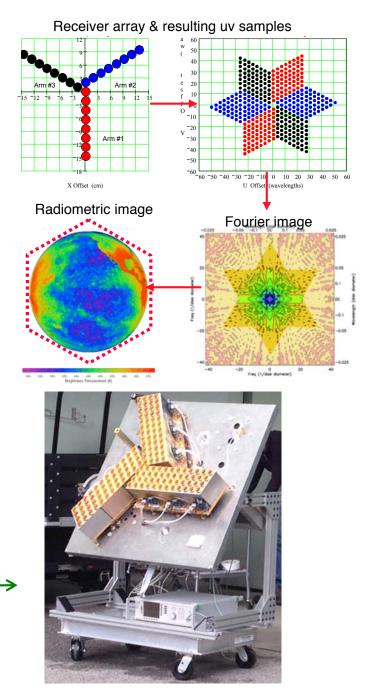
		118 GHz	183 GHz		
8	System noise temperature	< 600 K	< 800 K		
	Minimum # of channels	4	4		
	Minimum spectral resolution	350 MHz	350 MHz		
	If Channels	+1, +2, +7 and +8 GHz	-1, -2, -7 and -8 GHz		
	Minimum Spatial resolution	24 km at nadir (orbit:400 km)	13 km at nadir (orbit:400 km)		
)	Minimum Beam efficiency	>90%	>90%		
	Mass	5 kg			
	Power	W			
	Volume	3U			
	Data Rate	10 kbps			
300 200 100 -100 -200	400 -200 0 200	400			
	Cross Track [km]				

Microwave sounders at JPL: GeoSTAR Bjorn Lambrigtsen Pl

Aperture-synthesis concept

- Sparse array employed to synthesize large aperture
- Cross-correlations -> Fourier transform of Tb field
- Inverse Fourier transform on ground -> Tb field

Array

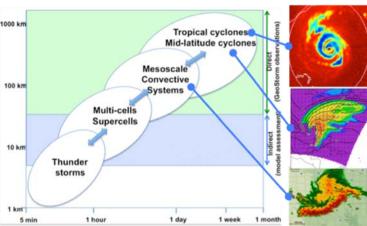

- Optimal Y-configuration: 3 sticks; N elements
- Each element is one I/Q receiver, 3.5λ wide (2.1 cm @ 50 GHz; 6 mm @ 183 GHz!)
- Example: N = 100 \Rightarrow Pixel = 0.09° \Rightarrow 50 km at nadir (nominal)
- One "Y" per band, interleaved

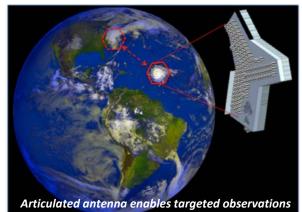
Other subsystems

- A/D converter; Radiometric power measurements
- Cross-correlator massively parallel multipliers
- On-board phase calibration
- Controller: accumulator -> low D/L bandwidth

This is the only viable "array spectrometer" design and is what the NRC had in mind in the 2007 "decadal survey"

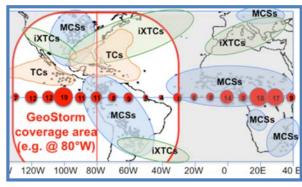
Proof-of-concept prototype developed at JPL


GeoStorm: A low-cost GEO/MW mission concept


Pre-Decisional Information -- For Planning and Discussion Purposes Only

GEOSTORM: A GEOSTATIONARY MICROWAVE SOUNDER MISSION FOCUSED ON THE EVOLUTION OF SEVERE STORMS

Improve our understanding of sudden and unpredicted change in intensification and motion of destructive storms:


- hurricanes
- severe thunderstorms and mesoscale convective systems
- mid-latitude cyclones and winter storms

Low cost as a hosted payload

Many hosting opportunities in GEO:

There are more than 80 GEO comm-sats that provides a view of the Americas, being replaced at a rate of 5-6 per year

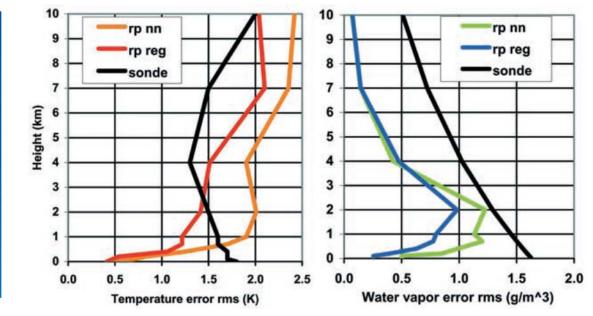
GeoStorm Highlights						
Targeted observations	Life cycle storm tracking					
Time-continuous	Capture dynamic processes; diurnal cycle fully resolved					
Multiple simultaneous	Temperature, humidity,					
key parameters	precipitation, wind					
All-weather	Cloud/rain-penetrating					
3-D observations	1000 km dia x 15 km vert. (volume); 25 km dia x 3 km vert. (resolution)					
Wide coverage	All storms visible from GEO					

"GeoStorm" implements a small version of GeoSTAR and requires articulation to cover the Earth disc A full-size version of GeoSTAR will cover the entire Earth disc without articulation Hosting on a commsat minimizes mission cost

Ground based: State of the art

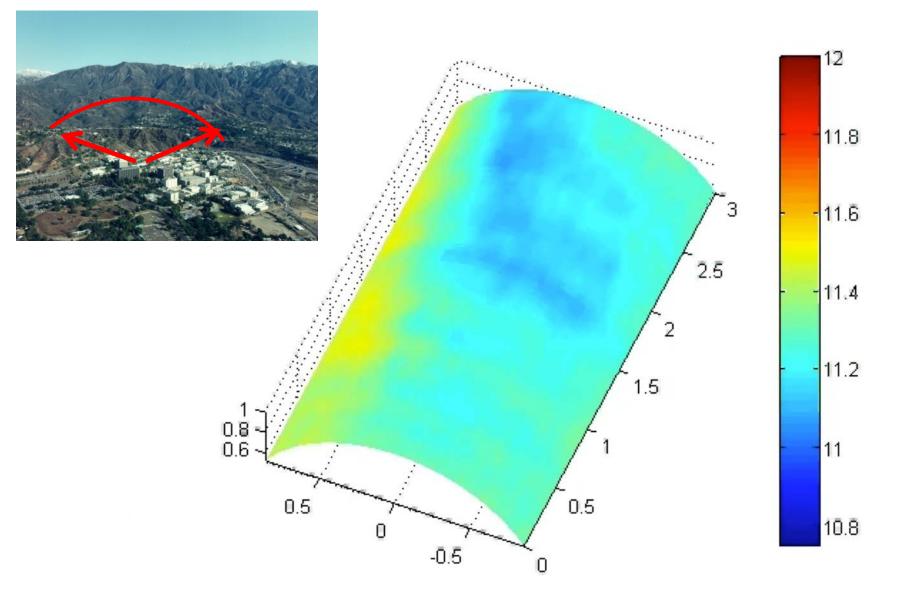
Developed by Westwater in the 1980's

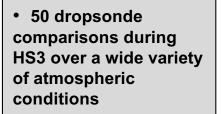
- Used to complement raobs in Colorado
- Fair vertical resolution of T(z), modest for q(z)


State of the art: Radiometrics Microwave Radiometer Profiler (MWRP)

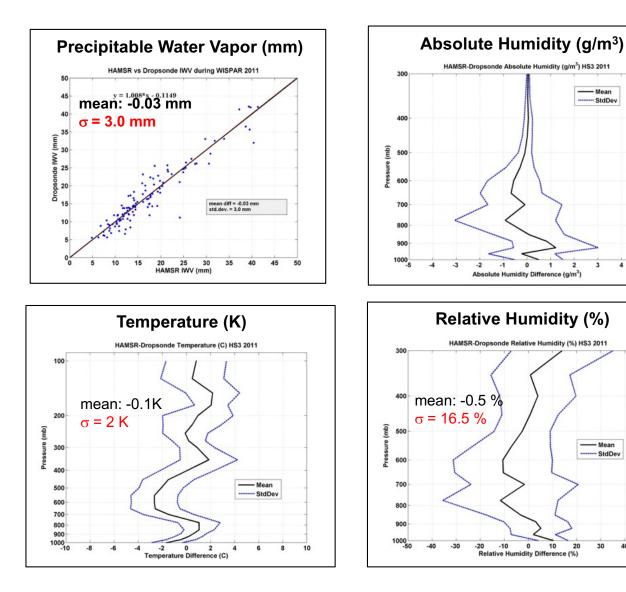
- 12-channel T & q sounder
- Rugged construction, autonomous operation
- Fair vertical resolution

Limitations


- Uses 22-30 GHz for q-sounding \rightarrow only modest vertical resolution & sensitivity



Ground based: HAMSR observations


- HAMSR operated in upward looking scan mode at JPL 2/2/2010
- Retrieved PWV time series along scan arc reveals small scale structure: 0.3 mm resolution

HAMSR retrieval accuracy (from above)

 Dropsonde profiles smoothed vertically to match HAMSR vertical resolution

4

40 50

HAMSR: Vertical resolution ~ 1-2 km; horizontal resolution ~ 1 km Satellites (ATMS): Vertical resolution ~ 2-3 km; horizontal resolution ~ 15-25 km

Future: Nadir MW sounders optimized for PBL

From the ground

- Optimize spectrometer to produce evenly spaced weighting functions
- Moderate engineering effort

From the air (HAMSR) or space (MASC)

- Hyperspectral sounding: 100's or 1000's of channels
- Moderate technology development
- Moderate engineering effort

Hyperspectral: What is possible?

- We think 1/4 km vertical resolution is feasible

Spatial resolution

- Current MW satellite sounders: ~ 15 km
- We think ~ 5 km is feasible, maybe even better

But: Temporal resolution, sampling & coverage is a big problem

→ Next slide…

GeoSTAR: Notable & useful features

Flexible measurement frequency

- Basic cycle = 1 minute
- Accumulation period = 5 min to 20 min (typically 15 min)
- Can accumulate over unlimited intervals
- Independent measurements: Measurement cycles are not correlated with each other

Flexible radiometric sensitivity (NEDT) vs. "integration time"

- NEDT ~ $1/\sqrt{\tau}$
- For q: about 2 K in 1 minute ("GeoStorm" implementation later slide)
- → 0.9 K in 5 minutes; 0.5 K in 15 minutes; 0.25 K in 1 hour
- "Integration time" = "averaging interval" in ground processing \leftarrow S/W selectable!

Flexible channel set

- Basic "AMSU" sequence: 6 T-channels + 4 q-channels in rapid succession
- − Can command subset on-orbit: e.g., only 4 q-channels \rightarrow reduce NEDT by x1.6

Hyperspectral mode of operation

- Spectrometer is fully programmable and can be reconfigured in < 1 second
- LO operates from frequency synthesizer \rightarrow can create arbitrary channel set
 - achieve closely spaced channels
 - achieve wide channel set over time

GeoSTAR and the PBL problem

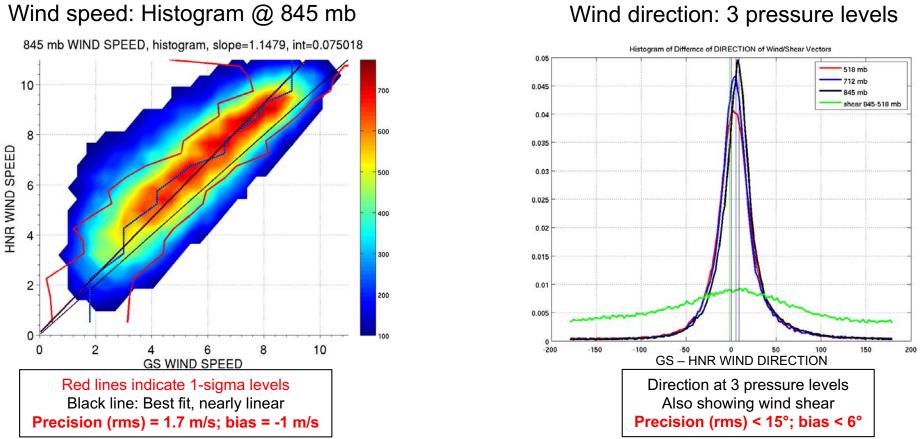
Full temporal resolution

- Can capture rapid processes
 - Trade temporal resolution vs. NEDT: 1 minute @ 2 K to 1 hour @ 0.25 K
- Fully resolve the diurnal cycle
- Fully resolve complete life cycles of processes & phenomena
 - Maintain calibration & continuity for weeks

Enhanced vertical resolution

- Can synthesize hyperspectral characteristics
 - Especially for slowly evolving processes: Synthesize very high resolution & maintain low noise
 - · We can create a sequence of channels with very closely spaced wt-functions
 - Effective noise can can be reduced without limit \rightarrow deconvolution without undue noise amplification
 - Can use other "image processing" techniques to increase effective vertical resolution

Solve the emissivity problem by staring


- Effective where emissivity is changing very slowly
 - Separate emissivity term from atmospheric term: Generate first-guess maps
 - This will work well because angle of incidence (polarization) is constant
- Separate out any diurnal term
- Separate out any impulse term (precipitation event)

GeoSTAR does wind!

- Water vapor feature tracking (AMV wind)
- Under all weather conditions (clouds, rain)
- OSSE: Δ (speed) < ±2 m/s; Δ (dir) < 15°

GeoSTAR wind OSSE

Based on large sample size (> 5000); cases with rain rate < 1 mm/hr

Wind direction: 3 pressure levels

Precision < ± 2 m/s - This meets WMO requirements for wind

ſ	Pressure level (mb)	Bias		RMS error	
	518	-0.8 m/s	2°	1.9 m/s	14°
L	712	-1.2 m/s	3°	1.6 m/s	11°
L	845	-1.0 m/s	6°	1.7 m/s	10°

Lambrigtsen JSTARS 2018

Summary

We probably need a full complement of sensors

- Radar: High vertical resolution of hydrometeor profiles, convective structure
- Lidar: High vertical resolution of moisture (but only in non-cloudy scenes)
- GPSRO: High vertical resolution of q(z) (but needs T from other source)
- IR sounders: Moderate vertical resolution of thermodynamics (clear only)
- MW sounders: Moderate vertical resolution of thermodynamics (all-weather)

From all vantage points

- From the ground: Resolve small-scale structure in local ROI
- From the ocean (buoys etc.): Measure remote-area MBL with high vertical resolution
- From the air: Measure regional PBL (ROI/process-focused)
- From space (LEO): Measure global PBL (moderate resolution)
- From space (GEO): Measure mesoscale PBL (high resolution & coverage)

Coordinated effort

- All observing systems operating in tandem \rightarrow fill individual capability gaps

MW sounders: Important component of a PBL observing system! A geostationary MW sounder can provide key PBL observables