

## Studying Atmospheric Dynamics at the top of the PBL with LEO-GEO Stereo Imaging

James L. Carr, jcarr@carrastro.com Dong L. Wu, dong.l.wu@nasa.gov

1 October 2018

Science at work

6404 IVY LANE SUITE 333 GREENBELT, MD 20770



## Topics

- New Results with Stereo Imaging\* (Carr)
  - MISR and GOES 3D-Wind Retrievals
  - Good accuracy and coverage for PBL studies
  - Future LEO-GEO Systems (see: "A New Approach to Passive Wind Estimation Using Stereo Methods", Michael Kelly et. al. tomorrow)
- PBL Sciences with LEO-GEO Stereo Imaging (Wu/GSFC)

\*Submitted to *Remote Sensing* Special Issue: MISR Authors: Carr, J., D. Wu, M. Kelly (APL), J. Gong (GSFC)



## **LEO-GEO 3D-Winds**

Multi-Angle

**CARR** ASTRONAUTICS



- LEO on NASA Terra S/C
- Fore & Aft-looking Cameras
  - An: nadir looking
  - Af, Aa: ±26.1°
  - B, C, D: oblique viewing
- Red Band
  - 275 m resolution
  - 360 km swaths



- GEO stationed at -75°
- Advanced Baseline Imager
  - Full-Disk (5, 10, 15-min. refresh)
  - CONUS (5-minute refresh)
  - MESO (30, 60-sec. refresh)
- Red Band
  - 500 m resolution
- Very accurate geo-registration

### Science at work

www.carrastro.com

## **Disparity Measurements** CARR **ASTRONAUTICS** 40x40 MISR pixel templates • 8 x 8 MISR pixel sampling (2.2 km) Normalized Cross Correlation Subpixel resolution by Interpolation Self GOES Time **MISR MISR Track** Science at work www.carrastro.com



# Multi-Angle/Temporal Composites

#### **GOES Remapped to MISR Projection**

MISR Aft-Nadir-Fore SOM Composite



#### **Disparity = Height Parallax + Wind**

MISR alone: Challenged to separate Along-track wind from height

GOES-16 Multi-Temporal SOM Composite



#### **Disparity = Wind + MISR-to-GOES Parallax**

GOES alone: IR height assignment

Science at work

www.carrastro.com

5

# Interpreting Disparities An-to-X

Process in MISR blocks

CARR ASTRONAUTICS

- Model MISR and GOES pixel times – No LEO-GEO Synchronization Needed!
- Retrieval Model States
  - 1 pattern height/site
  - 2 horizontal position adjustments/site
  - 2 horizontal velocities/site
  - 2 global bundle adjustment states
- Nonlinear, sparse-matrix solution of order 5N+2~10<sup>4</sup>



www.carrastro.com

### **MISR+GOES over CONUS 2018**

P024O098797B53:77 + GOES-16, N=111894 2018-07-15T16:58:51.390:2018-07-15T17:07:09.069

P024O098797B53:77 2018-07-15T16:58:51.390:2018-07-15T17:07:09.069 OR\_ABI-L2-CMIPC-M3C02\_G16\_s20181961702266\_e20181961705039\_c20181961705156.nc One Frame of 5-minute GOES CONUS Imagery





### Validation over Clear-Sky Terrain



#### 9

### **Comparison with IR Height Assignments**



## **GEO-GEO 3D-Winds**







**MINX** outputs



#### MODIS Cloud Optical Depth (COD)

MODIS Cloud Eff Radius (Reff)







## PBL Cloud Top (CTH) and Base (CBH) Heights



### Oceanic Cold Pool Processes

- Lifetime < 1 day
- Shallow convection and precipitation-induced downdrafts
- Reorganization of cloud distributions: albedo and moisture transition

Zuidema et al. (2017)



Model Simulation (Feng et al, 2015)





Resolution: 1.1 km Precision: height: ~100 m wind: ~0.3-1 m/s



# Ship Track Clouds from MISR

## (Aerosol-Cloud Interactions)



Height Profiles (ASL) for O40214-B57-P3 Zero-Wind Height 1200 Wind-Corrected Ht Terroin Height 1000 800 Meters 60( 400 200 -200 20 40 60 60 Distance From Plume Source (Km)

(a) Open cellular clouds



(b) Closed cellular clouds





Chen et al. (2015)

Albedo

## **Maritime PBL Closed and Open Cells**





- What is the correlation between cloud top height and the wind divergence?
- How are cellular structures related to wind convergence/divergence?
- What determine cloud height variations?



Wind Con/Divergence Background wind Relative motion

# Summary

- Stereo imaging has sufficient vertical resolution and good coverage for PBL studies
- Needs for constraining PBL dynamics at top and bottom:
  - Winds from cloud imager (top) and from scatterometer (bottom)
  - Cloud microphysics from imager (top) and SST from microwave (bottom)
- Needs for sufficient PBL spatial and temporal sampling:
  - LEO for global high vertical resolution
  - GEO for temporal evolution
  - LEO-GEO for comprehensive understanding