Considerations for Space-Based PBL Observation and Modeling

Belay B. Demoz

UMBC -JCET (and - Howard University-Beltsville Center) bdemoz@umbc.edu

Collaborators*:

- UMBC: R. Delgado, B. Carroll, Z. Yang, V. Caicedo, A. Tangborn, S. DeSouza-Machado, W. Kironji, K. Vermeesch
- Howard U: R. Sakai, D. Whiteman, A. Flores
- **NOAA:** M. Hicks (NWS), D. Atkinson (NWS), J. McQueen (NCEP), P. Lee (ARL), B. Baker(ARL), T. Reale (NCEP)
- NIST: I. Lopez-Coto
- **GSFC:** S. Palm, J. Santenello, J. Welton, J. Lewis, J Sullivan
- Europe: P. DiGirolamo, V. Wolfmayer,

<u>Acknowledgment:</u> <u>Disclaimer</u>: *Most of the work here funded by grants from : NOAA, NSF, NASA List may not be complete & it doesn't mean they endorse what I say. I wanted to acknowledge that they have worked with me on some aspects of what follows.*

Speaking of PBLH

Just for fun – *my "biased" view*

If you are willing to wait years If you think two points make a profile If you have dreams of \$\$\$\$\$ If you live next to an airport

If you are willing to re-define PBLH

use GPSRO use AIRS use space-based Raman use ACARS

you can have it "sooner"!

but really I'm only kidding here

PBL and Weather/Convection: NASA/NOAA/NSF goals

of the <u>sub-cloud layer</u> thermodynamics at scales!

PBL & Air Quality: NOAA/EPA/MDE/NASA/NE-States

For more on this – please visit UMBC lidar pages.

PBL height: https://lidar.umbc.edu/ad-hoc-mixing-layer-height-working-group/ Smog blog: http://alg.umbc.edu/usaq/

OWLETS: https://www-air.larc.nasa.gov/missions/owlets/

PBL height data is critical for

- High Bias in O₃ and CO prediction linked to PBL venting (McQueen/Lee/Baker)
- Plume injection/dispersion work (P. Lee)
- Smoke transport and mixing down to surface linked to PM, Black Carbon, O₃ (Dressen et al, TOLnet, etc)
- Resolve hourly/diurnal variability
- "regional" variability
- Multi-instrument network

Photochemical Assessment Monitoring Stations (PAMS): EPA is requiring *Hourly Mixing Layer Height*.

Address the spatio-temporal structure of PBL for air pollutants study?

PBLH from space – maybe? But ground network is fundamental!

Past reports and outcome:

- PBL thermodynamics profile
- Ground based remote sensing
- Process scales recommended

<u> Active – lidars</u>

- NOAA-ASOS (archive data, ^β)
- DIAL- (promising dev., β, q)
- Raman- (in operation, β, q, T)
 [See Dave T. for MWR/AERI]

Points:

- PBL thermodynamics *profile is key but don't discount the aerosol structure.*
- There are mature ground based remote sensing systems/options
- Networks (400sites) recommended
- NOAA-NASA-other collaboration!
- Process scales observation (continuous) should be focus
- Science drivers were both Air quality and convection (severe storm) forecasting.

- Visibility., P, T, Td, U, V, Precip., present weather, Cloud base altitude (<12K ft)]
- Aerosol backscatter profile (15sec, 30m) measured but not archived

Two active PBL height methods:

- Recommended ASOS archive:
 In progress by NWS (2020 hope(?)).
- Less accurate methods (radar) may be there too (in research).

NASA Sounder Science Team meeting; October 1-5, 2018, Greenbelt, MD

PBL height or mixing length depth" – definition

Disclaimer: No good way to define the PBL height without temperature and moisture profile. Lower tropospheric thermodynamic profiler should be the goal!

		Co (%)	Mean (m)	SD (m)	Median (m)	IQR (m)
Ε	YSU	59	-19	469	-60	464
Je	YSU +NARR	56	-50	477	-95	506
Ö	MYNN	60	-7	446	-2	464
RF-	MYNNe	60	7	475	-36	470
	MYNNe +nicd	61	39	451	-14	471
\leq	BOUL	56	-18	488	-74	516
	BOUL +UCM	57	76	489	15	537
JN	QNSE	51	194	550	127	610

check model PBL parameterization

- applications: fire/smoke/transient wave/PM
- ΔPBLH± 200m is as good as it gets

Are operational and could serve an integral part of future space-based systems and models!

** true assimilating PBL height. Is needed.

PBLH and lidar: Lessons learned, A scanning advantage? HARLIE (Holographic Airborne Rotating Lidar Experiment) - ground LASAL (Large Aperture Scanning Airborne Lidar) - airborne

<u>If possible – scan!</u>

- Captures PBL variability (~ proxy for turbulence)
- PBLH Variability → clues for atmospheric "state" (Marine versus land; day versus night; etc)

Scanning space-based lidar?

See: Carroll, et al (2017), 28th ILRC; Bonin et al (2017) JTECH.

636.0

My (Biased?) view on satellite PBL

I have not seen a PBL product that would address the Air quality and weather goals from current space-based elastic lidars -?

Palm et al (2005) : PBL He ECMWF is 200 – 400m low GLAS: October 3- Novem ECMWF: Ave. of 12hr fored

• A better "laser", a better telescope

• A better data repeat cycle, resolution

ATLAS Atmospheric Thermodynamics LidAr in Space Di Girolamo et al ESA proposal.

See Dave Whiteman's talk for detail

- Laser: 2.5 J at 355 nm with a repetition rate of 100 Hz.
- 4m-diameter telescope

ATLAS was proposed to provide q/T near the large end of the spatial scales needed but not in time (repeat cycle).

We will have plenty of systems that can do aerosol backscatter well –

Take advantage for PBLH (or Mixing layer height.) These are cloud free performance!!

Target performance parameters

- Water Vapor
 - 300 m vertical resolution
 - 50 km horizontal resolution
 - 10% random uncertainty
 - An estimated 60-80% of cases meet this criterion for a dawn/dusk orbit
- Temperature
 - 300 m vertical
 - 50 km horizontal resolution
 - 1 K uncertainty
 - 80% of cases meet the criterion

Aerosol Backscatter

- 60 m vertical resolution
- 1 km horizontal
- 10% uncertainty
- 68% of cases meet the criterion
- Aerosol Extinction
 - 250m vertical resolution
 - 80 km horizontal
 - 20% uncertainty
 - 42% of cases meet the criterion

- Poor thermal contrast
- Scene-to-scene variability over land & accuracy makes PBL thermodynamics a challenge

Summary: Space-based PBL & Decadal Survey

- Thermodynamics profile preferred
- Process-based scales needed for Convection and evolution
- Sub-cloud thermodynamics is critical for convection
- Passive sensors → poor thermal contrast (Land/Ocean?)
- No current "active" or passive sensor at scales for convection
- Ground networks are critical for future space-based systems!
- Mature profilers & operational lidars exist and need to be exploited through collaboration
- A better assimilating code for aerosol-based PBL height is needed

NASA Sounder Science Team meeting; October 1-5, 2018, Greenbelt, MD

Thank You

