

ATMS Work at JPL

Bjorn Lambrigtsen, Evan Fishbein, Mathias Schreier Jet Propulsion Laboratory, California Institute of Technology

NASA Sounder Science Team Meeting, Greenbelt, October 24-26, 2017

- Motivation: NASA-controlled system to support research
 - Climate quality products
 - Independent of NOAA
- Development of NASA L1b processor
 - Initiated under ROSES'10 NPP Science Team
 - Per recommendation of NPP Science Team
 - ATBD and algorithms developed as extension of ROSES task w/existing funds
 - Implemented by Sounder SIPS (JPL)
 - Tested & verified by Schreier & Lambrigtsen
 - Code delivered to GES DISC for operations
- Maintenance
 - Funded @ 0.5 FTE by NASA NPP Project (Gleason)
 - Monitor ATMS instrument & calibration performance
 - Maintain calibration algorithms & coefficients
 - Develop improved calibration algorithms

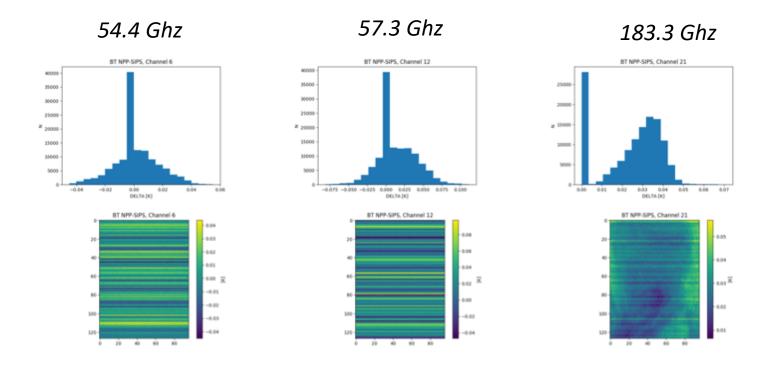
L1b algorithms & code: Status

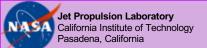
- Version 1: The goal was to minimize differences to operational IDPS, using IDPS-coefficients
- Tested in 2016, processing started in 2017
- However: Errors in the IDPS coefficient-files mandated a change in the code
- The current Version 2 version uses the updated coefficients
 Delivery and processing is supposed to start by End of September
- Re-processing is done for every year, the coefficient errors will therefore be recursively corrected in this data

L1b: Differences from NOAA IDPS

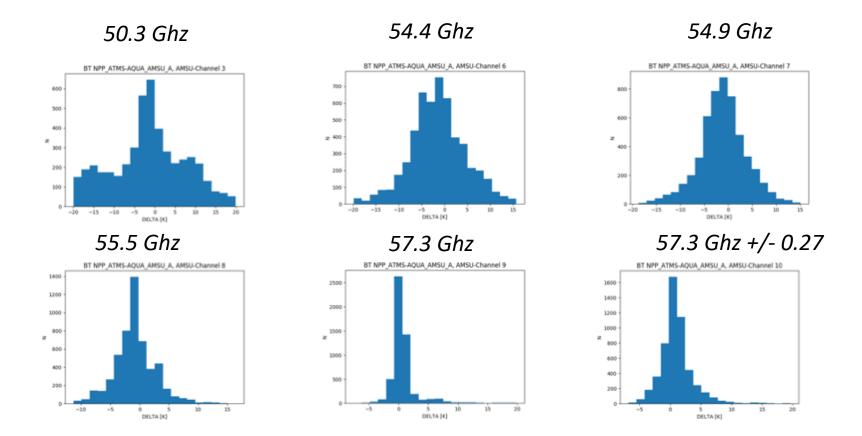
- Moon intrusion for cold-space calibration is calculated and flagged
- Slightly different use of box functions to average calibration
- Extensive quality flagging allows the user to filter the data specifically before use
- Backward reprocessing: errors, like coefficient mistakes, will be recursively corrected
- IDPS is changing to radiances instead of brightness temperatures

Compatibility with EOS, like AMSU-A on EOS Aqua:


The variable convention/format in the files is similar to other EOS datasets Both, the NPP-data and the EOS data will be netcdf in the SIPS database


L1b: Comparisons with IDPS SDR

Upper panel: histogram of differences

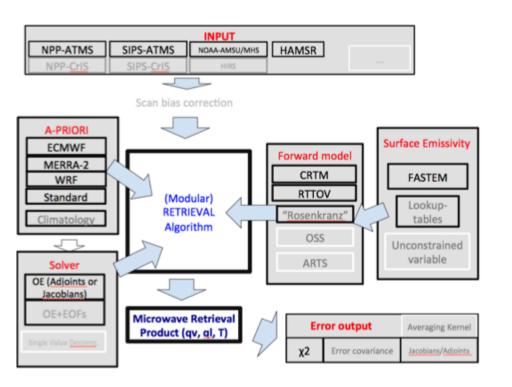

Lowe panel: scene difference

- Most channels (left and middle) show negligible deviations the pattern of the scene difference is just a result of the difference in the box-averaging
- However, some channels (right) show a small bias and a obvious atmospheric
 pattern in the channel difference. Reason unknown, but it might be an artifact of the
 radiance conversion (under investigation)

L1b: Comparisons with Aqua AMSU-A

- Suomi NPP and EOS Aqua have similar orbits, allowing a comparison of observations and a possible continuation of EOS AMSU-A observations
- The plots above show a crude comparison of selected channels for collocated observations (no time restrictions, time variation can be +-1 hour)
- 57 GHz channels show good agreement however a skewness is visible, indicating warmer AMSU-A observations

Part 2: ATMS retrieval system

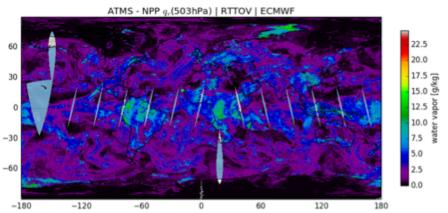

- Motivation: NASA-sponsored system to support research
 - Climate quality products
 - Independent of NOAA
 - Sponsored under ROSES'13/S-NPP
- Algorithm testbed (Schreier): Complete and functional
 - Used to develop advanced retrieval system accounting for scattering
 - Produces valid retrievals in the presence of precipitation
 - Applied to HAMSR aircraft sounder
 - Applied to ATMS (experimental)
- Baseline retrieval system (Fishbein): Undergoing integration and testing
 - Based on AIRS/AMSU retrieval system
 - Accounts for instrument differences, including polarization
 - Table based: Can be used on AMSU, ATMS and others
 - Delivery to SIPS expected in FY18Q1

L2 algorithm testbed

Modular Retrieval Testbed

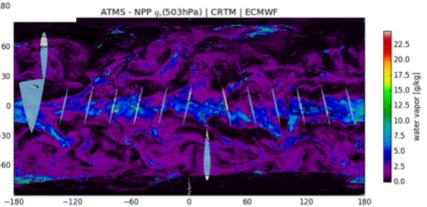
(RATATOUILLE) Retrieval Algorithm Testbed with A variety

of Transmutable Options to Understand Impacts of Limiting components and Limitations from too high Expectations


Testing Components:

- INPUT:
 - ATMS (h5,nc-SIPS)
 - AMSU-A/B (binary)
 - HAMSR (nc)
- Background:
 - MERRA-2
 - ECMWF
 - WRF
 - Standard
- Solver:
 - Optimal Estimation (Adj or Jacobians)
- Forward Model:
 - CRTM
 - RTTOV
- Others:
 - Channel selection
 - Covariances

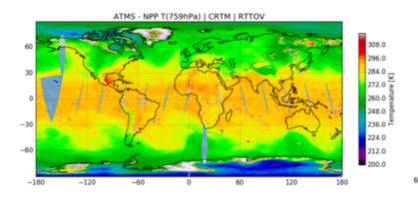
L2 testbed: Test examples (1)


- The testbed allows the comparison of the radiative transfer on the retrieval
- This becomes especially interesting, when scattering is involved, as different RTAs have different implementations of scattering

ATMS Retrieval with different RTAs

Comparison of 2016/04/01 for water vapor at 500hPa

Left : RTTOV Below: CRTM



L2 testbed: Test examples (2)

- The testbed allows the comparison of the background information on the retrieval
- With the need of higher accuracy, we can test, in how far climatologies or re-analysis impacts the the results

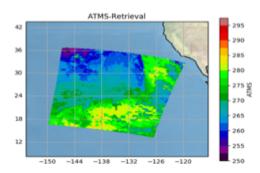
-60

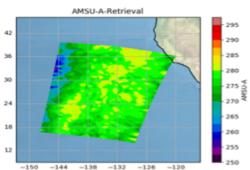
ATMS Retrieval with different Backgrounds

Comparison of 2016/04/01 for temperature at 770hPa Left: MERRA-2 Below: CRTM

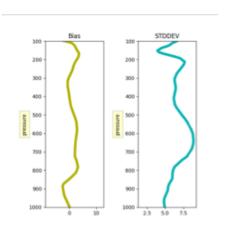
ATMS - NPP T(782hPa) | CRTM | ECMWF

308.0
296.0
284.0
272.0
260.0
248.0
236.0
224.0
212.0


-120

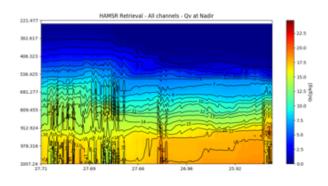

200.0

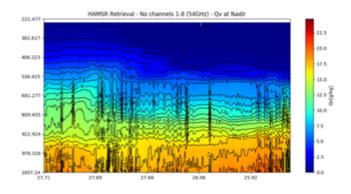
L2 testbed: Test examples (3)

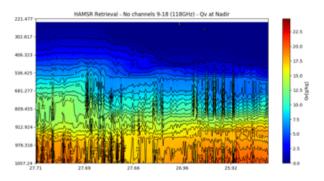

- The testbed allows the comparison of the different instrument retrievals under the same conditions
- This makes collocated comparisons interesting, especially with NOAA-19, SNPP and EOS Aqua flying similar orbits et the moment

Collocated AMSU-A and ATMS retrievals

Temperature at 600hPa for a random granule in the Pacific
Left: ATMS
Left Below: AMSU-A NOAA-19 (3h later)
Below: difference in collocated temperature-profiles

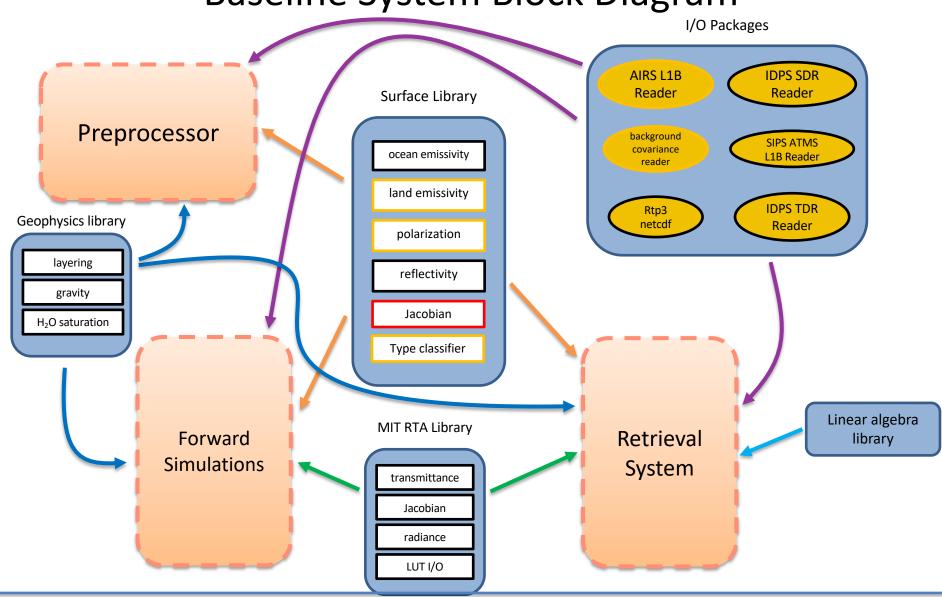



L2 testbed: Test examples (4)


- The testbed allows the "de-activation" of channels
- This allows to estimate the impact of channel loss on the retrieval and to estimate the increasing impact of background information

HAMSR Retrieval with different channels

A vertical retrieval comparison (temperature) for CPEX, with all channels (Fig. below), excluding 54Ghz (right) and excluding 118GHz (right below)



Baseline System Block Diagram

