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Outline

• AER Earth system science profiling algorithm
• Modular software for collaboration and 

experimentation
• Radiance-based pre-classification of fields of 

regard
– Pre-classification method
– Class definition method
– Pre-classification performance
– Implementation in profiling algorithm
– Impact on retrieval performance
– Impact on climate change signal detection
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Top-level modular organization
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Top-level modular organization
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Top-level modular organization
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Generic physical retrieval stage operations: 
Initialization
• Load and initialize atmospheric background (a priori)

– Defines the vertical grid used in retrieval (e.g., hybrid 
pressure-σ)

– Basis functions (e.g., EOF, trapezoid) and pseudo-inverse are 
loaded with background data

• Load and initialize surface MW background
• Load and initialize surface IR background
• Configure retrieved variables

– Number of variables for temperature, cloud variables retrieved, 
etc.
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Background handler is object-oriented
Each retrieval stage has its own instance of background controls and data



Generic physical retrieval stage operations: 
Execution
• Get atmosphere background (e.g., climo)
• Get surface MW background (e.g., climo)
• Get surface IR background (e.g., climo)
• Get FOR-specific atmosphere background (e.g., T,qH2O, for trace gases)
• Get FOR-specific surface background (e.g., gridded database)
• Combine backgrounds (e.g., weighted average)
• Apply basis function transformation to background
• Fill first guess with result of prior retrieval stage
• Iterate: 

– Radiative transfer (e.g., OSS)
– Transform to retrieval space
– Inversion
– Test for convergence
– Transform to geophysical space
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Atmosphere class
Surface MW class
Surface IR class



Radiance-based pre-classification concept
• Optimal estimation (OE) algorithm uses global background, by 

default
– Loose constraint allows solution to have strong 

dependence on the satellite measurements
• Pre-classification selects background that represents a subset 

of the global conditions
– Background errors better comply with Gaussian 

assumption of OE
• Pre-classification is based on the satellite measurements only

– Does not introduce influences of ancillary data sources
– No explicit geographic or seasonal associations
– Use only microwave channels sensitive to upper 

troposphere and stratosphere and infrared channels 
sensitive to stratosphere

• Avoid effects of surface and clouds that could cause 
misclassification
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Pre-classification method
• Probabilistic neural network
• Objective is to select an atmosphere class based on 

measurements 
• Inputs are radiances (or brightness temperatures) for 

ATMS channels 9 to 14 and secant of zenith angle
– Each input variable is normalized to the maximum of the variable 

among all training cases
• PNN training uses the same global profile database as 

used to compose the background
• Radiances computed for each profile

– Sensor noise added to be consistent with application
• Training involves finding the optimal value of a tuning 

parameter
– Based on % correct classification with an independent dataset
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Definition of atmospheric profile types
• Clustering of the same global profile database as is used 

to compose the global background
– 3000 profiles from a database collated by ECMWF

• Unsupervised k-means clustering method
– Applied to combined temperature (p>1 mb) and water vapor 

profiles (p>300 mb) on hybrid pressure-σ coordinate
• Profiles represented as departures from the mean, normalized by the 

standard deviation*
• Relative influences of temperature and water vapor levels is regulated 

by a weight factor*
– 0.12 selected subjectively, with relatively high influence of 

temperature, consistent with intent to use temperature channels for 
classification

• Number of clusters is specified
– Sets with 4 clusters to 8 clusters were tested
– With such low numbers of clusters, the background constraint is 

still loose
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*Following Chevallier et al., 2000, QJRMS 



Clustering results
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4-cluster set temperature profiles

5-cluster set temperature profiles



Definition of atmosphere classes

• The classes are not defined directly by the 
profile data clustering results

• Classes are defined by the same radiance-
based classification method as is used in the 
retrieval
– Addition of noise means that class boundaries 

overlap, within the range of uncertainty of the set of 
measurements that are input to the classifier

• “fuzzy” classification  
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Atmospheric classes
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5-cluster/class set water vapor profiles

5-cluster/class set temperature profiles

Classifier results (red) plotted over cluster results (blue)



Classification performance with independent 
dataset
• Independent data are from TIGR3 dataset
• True class determined from profile data, using result of 

clustering defined with the background dataset
• Radiance-based classification trained from the 

background dataset
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Performance on TIGR3 set:
4 classes 22% misclassification
5 classes 22% misclassification
6 classes 29% misclassification

Classifier results (red) plotted 
over cluster results (blue)



Implementation in profiling algorithm
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Impact on temperature retrieval results
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errors are for individual levels
no averaging over layers

500 profiles from simulated measurements

CrIS + ATMS ATMS only

Larger impact for 
microwave-only

Reduced information 
content of measurements 
leads to larger impact of 
background treatment

Performance is 
essentially identical 
with 5 and 6 classes

Minor improvement 
through much of the 

vertical range



Impact on water vapor retrieval results
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Benefit of pre-classification is 
largest near the surface,
despite using only upper-
altitude temperature 
channels in pre-classification

errors are for individual levels
no averaging over layers

500 profiles from simulated measurements

CrIS + ATMS ATMS only



Response of retrievals to climate change
• Would atmosphere pre-classification affect the response 

to change?
• When algorithm products are used to monitor climate 

change, would response to change be muted or biased 
by using a static background, composed from past 
profiles?

• Experimental approach:
– 30-year climate change (2006 to 2036) simulated by GISS-E2-R 

for CMIP5 RCP4.5
– Take one sample of profiles from 2006 and another from 2036 

and use data from each sample to make separate background 
estimates and error covariances

– Take independent samples from each to use in retrieval 
experiments

– Simulated CrIS and ATMS measurements
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Fidelity of 30-year climate change in 
retrievals: temperature
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Fidelity of 30-year climate change in 
retrievals: temperature

© Atmospheric and Environmental Research, Inc. 2017 20

ATMS only

Change fidelity is modestly 
reduced, relative to results 
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Fidelity of 30-year climate change in 
retrievals: water vapor
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CrIS + ATMS

Moistening is represented 
with high fidelity from 
surface to about 250 mb
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Fidelity of 30-year climate change in 
retrievals: water vapor

© Atmospheric and Environmental Research, Inc. 2017 22

ATMS only

ATMS-only results simulate what would happen if it were necessary to rely on ATMS-only retrievals 
globally, but global change assessment would rely on CrIS+ATMS retrievals substantially

Fidelity is a little better with 
global background than with 
pre-classified atmospheric
background

dynamic background 
“ideal case”

static background

Global 
background

5-class 
background

moistening

Above ~200 mb the outdated 
background mostly 
eliminates the moistening 
MW data have little water 
vapor signal



Current developments and next steps

• Preliminary version of AER ESDR algorithm 
software was delivered and is being integrated at 
Sounder SIPS (JPL)

• Parameterization of non-LTE effects for the optimal 
spectral sampling (OSS) radiative transfer model
– Using updated datasets

• Developing empirical model of ocean surface 
emissivity dependence on wind speed for ATMS
– To improve forward model and background

• Integrating alternatives for cloud mitigation
• Tests and performance analysis with S-NPP 

measurements 
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