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Influenza Background

Seasonal influenza epidemics are a major public health concern
— Millions of cases of severe illness worldwide each year
— 250,000 to 500,000 deaths worldwide each year
— Large economic toll

In temperate regions influenza incidence generally has pronounced peaks
in the winter.

— But specific timing, magnitude and duration of individual local outbreaks
in any given year are variable and not well explained

If the timing and intensity of seasonal influenza outbreaks can be forecast,
this would be of great value for public health response efforts.

— Could guide both mitigation and response efforts

— Planning and stockpiling of vaccines and drugs

— Management of hospital resources

— Focusing of efforts to areas with more urgent need
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Humidity & Influenza

Recent studies have highlighted a role of absolute (or specific) humidity conditions
as a leading explanation for the seasonal behavior of influenza outbreaks
- Decreasing absolute humidity associated with increased influenza activity

Lab experiments:

- Absolute humidity strongly modulates the airborne survival
and transmission of the influenza virus.

Climate & influenza data records:
- Increased wintertime influenza-related mortality in the US
associated with anomalously low absolute humidity levels

Humidity-driven epidemiological models yielding promising results

The reason for the humidity—influenza relationship is not well established

but a few mechanisms are proposed
- Drying of mucous membranes
- Humidity effects on droplet sizes and travel range
- Increased survival times for the virus



Humidity & Influenza

AL L it it ool ~——— * Shaman et al. (2010) used 30 years of

1 -
flu-related mortality data and
3 AN AN humidity data
3 * Anomalously low humidity preceding
5_,- the onset of influenza seasons
2 * We have used AIRS and Google Flu
@ 2 Trends data at city, state and regional
§ — : .
5 ,' —— e scales in the US to give fu rtlj\e-r
-3f Sl gt support for the role of humidity (and
~40 -30 -20 10 0 10 20 temperature) in driving influenza
Day Relative to Onset
. seasonality
GFT Plus State Level: Days from Onset vs Humidity
Anomaly (Smoothed)
. 000015 State Level: Onset vs Temperature
2 00001 Anomaly (Smoothed)
& 0.00005
2 1.2
< 0 1
g . 5 8f11 14 17 20 .
£ -0.00005 2 o
= 00001 é‘ '\\
§ -0.00015 :%’
o 00— < >~ O
o -0.0002 g . ———
10.00025 S
Days from Onset '
-1

= Onset 150 Onset 200 ====Onset250 ====Onset 300 Days from Onset Credit: Emily Serman



Model of Influenza Outbreaks

* We have developed and implemented a numerical prediction
system that is driven by specific humidity to predict influenza
outbreaks.

e Standard compartmental epidemiological model, SIRS (Susceptible-
Infectious-Recovered-Susceptible) type

 Two coupled first-order Ordinary Differential Equations numerically
solved for the number of susceptible and infected/infectious
people in a given population.

* Rate of infections and recoveries parameterized in terms of average
length of immunity and mean infectious period and assumed to
have a simple dependence on input specific humidity.
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Quasi-Operational Forecasting System

Daily updating most * NCEP forecasts for
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Retrospective Simulations

Pseudo-forecasts performed for 21 US cities (in hindsight with
observed humidity) for 2005-2015 seasons

5-day and 10-day influenza forecasts (with AIRS humidity) are
often quite accurate (example below for LA, 2013/14 winter)
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Quasi-Operational Prediction System applied to US cities

The system has been running
guasi-operationally for several US
cities

AIRS near-surface humidity is key
component of a quasi-
operational (produced daily)
influenza prediction system

Most recent values of AIRS near-
surface specific humidity as well
as NCEP humidity predictions
regularly incorporated into the
model

‘Observational’ data for influenza
incidence from CDC/Google
assimilated to make analysis and
re-initialize model

Ensembles of forecasts run with
different model parameter values
drawn from distributions
reflecting limited constraints
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Timing and relative behavior of influenza outbreaks
generally captured fairly well, while getting absolute
numbers of affected people is more challenging



AIRS and Influenza in South Africa

Near-surface humidity plays critical role in influenza epidemics
AIRS near-surface humidity correlates well with influenza cases
Mathematical relations depend on regional climate (provinces)

These relations can be used to monitor and predict influenza
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Dengue Fever and Environment Dependence

Dengue Fever is the most common
mosquito-borne virus in the world

Carried by Aedes aegypti mosquitos
(same as Zika, Chikungunya and Yellow
Fever) — strongly affected by
environmental conditions

Temperature affects mosquito
development and reproduction,
frequency of feeding, virus incubation
period and geographical range of the
vector (tropics and sub-tropics)

Precipitation provides breeding sites and
stimulates egg hatching, but can also
hurt habitats through flooding and
humidity has also been identified as a
substantial factor affecting favorable
conditions for the vector

Typically expect effects of temperature
and humidity to take 6-8 weeks
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AIRS - Dengue

We are exploring the application of AIRS climate data to the prediction of dengue fever incidence.
An ultimate goal is to create and implement an improved prediction model for Dengue.
We have done a focused study on Dengue fever in Mexico, from 2003-2015

Mexico has significant Dengue incidence in varied climate conditions, with weekly Google Dengue
Trends data available at state level as an estimate of disease activity

AIRS variables: surface air temperature, specific humidity, relative humidity

Examined trends, patterns and time lags, regression models of varying complexity




AIRS and Dengue Fever in Mexico
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Dengue and Climate in Mexico

Comparisons of year-averaged Dengue
activity (Google Dengue Trends, top)
and AIRS near-surface temperature
and humidity (bottom) show
climate-related regional differences
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Summary

Results using AIRS and influenza data support role of humidity and
temperature in driving the seasonality of influenza outbreaks

We have developed a humidity driven influenza model operating on a city,
state or regional scale

AIRS near-surface humidity is key component of the quasi-operational
(produced daily) influenza prediction system

For Dengue Fever, we have done a focused study in Mexico, exploring
trends, patterns and time lags for Dengue and environmental variables,
using regression models of varying complexity.

Promising correlations and climate-related regional differences have been
identified.



Future Work

Further validation of the prediction system

Obtaining and incorporating more specific influenza incidence data from medical networks
and authorities and internet sources.

Developing confidence and uncertainty measures (including effects of AIRS humidity data
uncertainty)

Better constraining of parameters and methods that account for their variability and
uncertainty

Implementing and assessing longer term seasonal predictions (using climatology, maybe
longer term humidity predictions in the future)

Exploring different types of models, virus subtypes, population age structure, geographical
spread

More engagement with potential end users



