AIRS Application for drought and fire: Current status and future plans

Ali Behrangi Stephanie Granger

Jet Propulsion Laboratory, California Institute of Technology

Thanks to:

Steve Licata, Yixin Wen, Alireza Farahmand

Why AIRS data?

The key factor in drying over land is that land surfaces (and the air just above them) warm, on average, about 50% more than ocean surfaces (M. M. Joshi et al. 2008).

This suggests that

(VPD= e_s -e) will increase over land

VPD=Vapor pressure deficit

Drought formation: A process

AIRS and US drought monitor (USDM)

Case study

2011 Texas Drought

2011 drought was the worst one-year drought in Texas since 1895.

2012 US Midwest Drought

caused \$12 billion in damages mainly from agricultural losses [Henderson and Kauffman, 2012].

2014 California Drought

2010-11 East Africa Drought

AIRS helps understand drought development processes

2012 drought

Behrangi et al. (2015)

Behrangi, A., P. Loikith, E. Fetzer, H. Nguyen, and S. Granger, 2015: Utilizing Humidity and Temperature Data to Advance Monitoring and Prediction of Meteorological Drought. *Climate*, **3**, 999-1017.

VPD and Fire

Annual burned forest area v. mean March–August VPD in SW forest area during 1894–2013. The figure is from Williams et al. (2014a)

Collaboration with The National Drought Mitigation Center (NDMC) U.S. Drought Monitor (USDM)

AIRS Drought Percentile Products – Processing Flow

Producing ½ degree; Near real-time percentiles for T, RH, VPD

Credit: Stephanie Granger Steve Licata

Loss of AMSU A2:

Assessing the impact of AMSU loss on drought analysis Comparing MW-IR and IR-only retrievals over Midwest drought

Current Status

□ Automated near real-time production of T, RH and VPD as percentiles for USDM

(delivered every Monday; USDM automatically pulls from our ftp site)

- ☐ Since May 2017 USDM incorporates AIRS drought products into data stack for authors
 - 7, 28, and 56 day window

Case study:

Recent drought over Montana, N&S Dakota

2017 05 15

USDM RH percentile 20170522 40 40 30 110 -100 -90 -80 -70

RH percentile

VPD percentile

USDM RH percentile 50 40 30

20170605

-120

-110

-100

-80

-70

-90

100

50

Vegetation health NOAA START

RH percentile

VPD percentile

RH percentile

VPD percentile

RH percentile

VPD percentile

USDM RH percentile 20170717 40

30

-120

-110

-100

-90

-80

-70

100

50

RH percentile

VPD percentile

AIRS: June 19th

USDM:

July 24th, 2017

Drought development is a process:

Relating VPD, NDVI, SIF, PRECIP, Soil moisture,

Environment:

- T RH VPD
- Precipitation
- Soil Moisture

Vegetation:

- SIF
- **NDVI**

SIF: solar-induced chlorophyll fluorescence Credit: Yixin Wen

Example: Timing of the peak drought conditions in 2012

Using VPD anomaly, USDM, VegDRI and QuickDRI

Wen, et al. In prep

Future Work

- Continue to work with National Drought Mitigation Center (USDM) to refine products
- Assessing irrigated/non-irrigated regions
- Combining the AIRS data with other related observations (e.g., VPD and Soil moisture)
- Utilize our results in decision making process:
 - Concept submitted to WWAO to support Missouri Basin Drought Early Warning System (Granger/Behrangi/Svoboda)
- Sustainability of data record (e.g., via NPP, etc.)