AIRS Applications Overview: Volcano, Influenza, Drought & More

Sharon Ray
AIRS Applications Development Lead
Jet Propulsion Laboratory, California Institute of Technology
October 2017

Joao Teixeira, Tom Pagano, Eric Fetzer, Bjorn Lambrigtsen
Vince Realmuto, Stephanie Granger, Ali Behrangi, Alireza Farahmand, Heidar Thrastarson

AIRS Applications Catalog - **FLUID!**

<table>
<thead>
<tr>
<th>DROUGHT</th>
<th>FIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>USDM</td>
<td>Fire Danger Assessment System</td>
</tr>
<tr>
<td></td>
<td>Indonesia Fires Seasonal Threshold</td>
</tr>
<tr>
<td>AVIATION</td>
<td>HEALTH</td>
</tr>
<tr>
<td>Volcanic SO2 Detection in VAAC</td>
<td>Influenza</td>
</tr>
<tr>
<td>Volcanic SO2 Loading in VAAC (Prata)</td>
<td>Zika</td>
</tr>
<tr>
<td>Volcanic Ash/Dust Loading in VAAC (Prata)</td>
<td>Dengue Fever</td>
</tr>
<tr>
<td>JPL Volcano Rapid Response - improved detection and products</td>
<td>AIR QUALITY</td>
</tr>
<tr>
<td>Cold Air Aloft</td>
<td>Temperature Inversions</td>
</tr>
<tr>
<td>Deep Convective Clouds</td>
<td>Air pollution CO tracer</td>
</tr>
<tr>
<td></td>
<td>Ozone intrusion from stratosphere into troposphere in NAWIPS</td>
</tr>
</tbody>
</table>
Drought Onset Detection

- AIRS valuable for monitoring & early detection of meteorological drought
- AIRS-derived **standardized vapor pressure deficit** (Behrangi et al. 2016) and AIRS-derived **standardized relative humidity index** (Farahmand et al. 2015) have shown early detection lead times of up to two months
U.S. Drought Monitor est. 1999

Weekly map of drought conditions, produced jointly by NOAA, US Dept Ag, National Drought Mitigation Center at Univ. of Nebraska-Lincoln

- Climatic/hydrologic/soil measurements + reports from ~350 U.S. contributors, 11 climatologists take turns as lead
- Not strictly quantitative, author’s use judgment to reconcile differences between sources

U.S. policymakers use USDM in discussions of drought and allocating drought relief

USDA makes drought declarations nearly automatic for a county shown in severe drought on USDM for eight consecutive weeks
July 2017

AIRS Vapor Pressure Deficit, Relative Humidity, Surface Air Temperature are now included in the generation of the U.S. Drought Monitor

Probationary period 6-12 months – if utility proven, will be used in generation of USDM going forward
Next Steps

• Determine if AIRS drought products have utility in National Drought Mitigation Center QuickDRI product

• NDMC – Serve AIRS drought products?

• Transfer operational production to NOAA?
Fire Application
AIRS & the JPL Fire Danger Assessment System (FDAS):
Using satellite observations to map global wildfire risk

JT Reager / Ali Behrangi / Natasha Stavros (JPL)
James Randerson (UCI)
There are no operational fire assessments that use NASA satellite information to help predict fire risk.

Recent research shows evidence that satellite-based climate and hydrology data sets may give a statistically significant advantage in fire prediction skill.

Simultaneous existence of multiple JPL water cycle satellite missions (SMAP, AIRS, GRACE/GRACE-FO) creates the opportunity for major advancement in operational fire-risk assessment.
Proposal: JPL Research and Technology Development (R&TD) Program

1) Build formal relationship between JPL and operational fire science community
2) Use recent research advancements & NASA data to create global fire-potential data product
3) Make product publicly available
4) Use guidance/input of operational fire experts

Can AIRS VPD-fire and the relationship between VPD, drought & fire (at monthly to daily timescales) contribute to determination of fire-risk?
Can AIRS VPD-fire and the relationship between VPD, drought & fire (at monthly to daily timescales) contribute to determination of fire-risk?

Proposal: JPL Research and Technology Development (R&TD) Program
1) Build formal relationship between JPL and operational fire science community
2) Use recent research advancements & NASA data to create global fire-potential data product
3) Make product publicly available
4) Use guidance/input of operational fire experts

Gallery: Firefighters battle wind-driven brush fire in Ventura

Firefighters responded to a fast-moving brush fire along the hills north of Ventura on Tuesday afternoon. CONTRIBUTED/VENTURA COUNTY FIRE DEPARTMENT
Health Applications

AIRS & Influenza/Vector-Borne Disease

H. Thrastarson / J. Teixeira (JPL)

Create a system for outbreak risk assessment that will be useful in public health efforts

Influenza

• Studies show humidity conditions as a leading explanation for seasonal behavior of flu outbreaks in temperate regions (Shaman et al., 2010 & Shaman & Karspeck, 2012)

• Increased wintertime flu-related mortality in US associated with anomalously low absolute humidity levels that precedes outbreaks.

Credit: Jeffry Shaman et al
Influenza...

- **At JPL** - Quasi-operational numerical prediction system based on SIRS model for flu outbreaks
- **Results support hypothesis** - Local humidity a significant driver
- **Data**
 - Humidity - AIRS near-surface humidity + NCEP forecast
 - Flu - CDC: weekly reports of # people with flu from lab & doctor visits; Google Flu Trends: based on # searches for flu, for validation only, historical data only
- **Paper in development** - includes production and processing of hindcasts and validation results

Vector-Borne Disease: Zika/Dengue

- Determine which environmental variables are most important in Zika outbreaks.
Inversions over cities result in lower air quality by trapping pollutants within the boundary layer.

Inversion strength

difference between maximum temperature in the inversion and the minimum temperature

Inversion thickness

altitude at which lapse rate resumes the decrease with altitude (the top of the boundary layer)

Help characterize AIRS’ skill in determining temperature inversions off coast of California (AOI for SCAQMD)

- Inversion strength, height
- Compare to radiosonde data

Summary

- AIRS has skill detecting inversion strength around and off California coast
- Data shows inversion strength increases from ocean to land
- Did not find skill in AIRS-based inversion height

Next Steps

- SCAQMD - interest in AIRS and TI?
Aviation Application

Cold Air Aloft

Intern M. Worden / Mentors: S. Ray, E. Olsen, E. Fetzer, B. Lambrigtsen (JPL) - C. Barnet (STC), B. Zavodsky (SPoRT)

CAA: Cold temperatures at or below -65 °C that occur at aircraft cruising altitudes are a safety hazard for the commercial aviation industry, can cause fuel to gel

- **Intern Matthew Worden** (Freshman/Sophomore, UC Berkeley/Physics)
- **Limited temperature data at polar altitudes and over ocean > AIRS NRT could locate regions of cold air**

![Diagram of cold air aloft regions](image)

Plot regions of cold air in cruise zone (35-45k feet)

- If regions of cold air found in cruise zone, then plot cold air in 2000-foot slices to isolate it vertically
- Can show altitudes that are safe to fly

- Red-Danger: $T < -65$ °C
- Yellow-Warning: T between -65 and -60 °C
- Green-Safe: $T > -65$ °C
Next Steps

• B. Zavodsky (SPoRT)– Forecasters familiar with NUCAPS; discuss with E. Berndt (SPoRT)

• C. Barnet (STC) – Lori Borg paper on Validation of AIRS V6 with NUCAPS

• Create operational images of CAA, post on AIRS site, can use for discussion with forecasters
Aviation Application
Volcanic Plume Detection Rapid Response
S. Ray / V. Realmuto / E. Olsen / S. Licata / L. Chen / E. Fetzer / B. Lambrigtsen / P. Penteado / J. Hall (JPL)
The importance and utility of AIRS/AMSU was widely noted. Data are of significant importance to FAA and the aviation community (sulfur dioxide, volcanic plumes). AIRS data are utilized in volcanic ash detection for the NOAA Rapid Update Cycle Rapid Refresh Model.
AIRS-based maps of volcanic plumes and clouds made by several European groups

SO2 Detection: Support to Aviation Control Service (SACS)
- Initiated by ESA, supports Toulouse & London VAACs provides NRT SO2 & volcanic ash from UV-vis (OMI, GOME-2A, GOME-2B, OMPS) and InfraRed (AIRS, IASI-A, IASI-B)
- Uses AIRS SO2 BT DIFF = (1361.44 cm\(^{-1}\)) - (1433.06 cm\(^{-1}\))

SO2/Ash Loading - Prata/Bernardo retrieval method

SAVAA Project (Support to Aviation for Volcanic Ash Avoidance) - NILU (Norwegian Institute for Air Research)
- ESA funded, also supports VAACs
- **Challenge**
 - No standard data products for volcanic ash and volcanic gas (principally SO2) – has led to ad hoc approaches and systems, lack of data product coordination between VAACs
 - But mature techniques from research community can be implemented for operational use
 - No internationally agreed-upon satellite-based volcanic product standards
 - No protocol in place for safe limits when planes encounter airborne volcanic substances
 - **Part of solution = provide quantitative satellite information and some means for validation**
 - **Another important factor: timeliness.** Most danger to jet aircraft occurs within 3 hours of a volcanic eruption; night
 - http://savaa.nilu.no/

Nicarnica
- spin-off of NILU; private company providing airborne natural hazard info to aviation
AIRS automated rapid response system *in development at JPL*

Low-Cost Strategy
Re-purpose SO2 BT DIFF and Dust Score as low-latency (rapid) response products for volcanic plume detection and SO2/ash loading

Rapid Response System Components - AUTOMATED

1. **Plume Detection**
2. **Image Creation**
3. **Update Volcano Web Page**
4. **Email Alerts to Curated List**
About the plume detection algorithm

• SO2 is the driver for plume detection, dust used in secondary way

• Plume event declared upon threshold exceedance of one of these:
 1. High # of SO2-only events
 2. Lower # of SO2+Dust events (combined allows for lower threshold limit)
 3. Extremely high # of Dust-only events (not likely, threshold set very high)

• High dust counts alone will not trigger a plume alert, causes too many false positives

• We can’t yet differentiate between volcanic and non-volcanic dust sources without also checking for presence of SO2
AIRS volcanic plume detection algorithm

Incoming L1B Data Granule
- Available within 1-1.5 hours of satellite overpass
- Contain 90 x 135 AIRS radiance footprints (cross track x along track)
- Footprints 14 km diameter at nadir

Divide granule into subregions
- 6x9 subregions
- Subregion = 225 footprint (250 km x 250 km at nadir)
- Maximizes sensitivity to spatially localized volcanic plume
- Minimizes false alarms due to widely scattered random hits

Test every AIRS footprint in subregion

Check all the subregion counter tallies:
- SO2-Only, SO2+Dust, Dust-Only
 - If any threshold exceeded, subregion has plume event

If any subregion has plume event, granule is flagged, plume event characterized, trigger is set
- Create images, update web page, send email notification to community

For each AIRS footprint:

Determine if footprint over ocean or land
- Allows for future tuning of dust test

SO2-Only Test
- Compare SO2 channel to non-SO2 channel. If SO2 brightness temperature difference exceeds threshold, increment SO2-Only counter

If SO2 Detected, then test for Dust in same footprint
- If Dust Score > 380, increment SO2+Dust counter

Dust-Only Test
- If Dust Flag indicates potential for dust AND Dust Score > 380, increment Dust-Only counter

Any subregion with plume event causes trigger to set. Code tests all subregions (even though it only takes one subregion to set the trigger) to allow for future fine-tuning of algorithm.
AIRS Volcanic Plume Imagery

Evidence of Activity SO2 BT DIFF, Dust Score

Loading SO2, Ash & Dust (S. DeSouza-Machado)

Cloud Obstruction Total Cloud Fraction + SO2 Overlay, VIS, IR

Available in JPG, KMZ, GeoTIFF

Volcano imagery to be added to suite of AIRS products produced by NASA LANCE NRT
viewable in NASA Worldview
archived in perpetuity on NASA GIBS
Puyehue Volcano, Chile June 2011
Dormant 50 years
Ash higher than 6 miles up
Region put under alert - 230 earthquakes/hour prior to eruption

Photos taken June 5, 2011
3. NASA Aqua satellite image of the eruption of Puyehue volcano, seen from low Earth orbit on June 4, 2011. #
AIRS detection of SO$_2$ 2011.06.06.187

June 6

SO2 BT DIFF
AIRS Detection of Dust 2011.06.06.187

June 6

Dust Score
June 6

Cloud Fraction

AIRS cloud detection 2011.06.06.187
AIRS Volcanic Plume Detection
Rapid Response Web Page

About AIRS Volcano Rapid Response Imagery

Event time stamp

Image descriptions

“Lay of the Land” images: Vis, IR

Headline images: SO2, Dust Score

Where on Earth locator (center of granule) + Volcano Finder

Links to ancillary products: SO2 Loading, Ash/Dust Loading, Cloud Product(s), Media Product

Custom link to NASA Worldview, shows AIRS volcano product layers

Link to AIRS User Guide

Links to other volcano resources

Link to AIRS volcano image archive
AIRS Volcanic Plume Rapid Response Products

Image Archive

2017/10/15, UTC 19:11:22, 192
-31.5 latitude, -78.0 longitude

2017/10/15, UTC 14:29:22, 145
20.5 latitude, -18.5 longitude

2017/10/15, UTC 10:05:22, 101
39.5 latitude, -119.5 longitude

2017/10/15, UTC 03:47:22, 38
-23.5 latitude, -38.0 longitude

2017/10/14, UTC 18:29:22, 185
-27.5 latitude, -69.0 longitude

2017/10/08, UTC 09:59:22, 100
38.5 latitude, -118.5 longitude

2017/10/06, UTC 12:59:22, 130
30.5 latitude, 2.5 longitude
Launching the AIRS Volcano Web Page

Soft launch of the web page
Phase 1: SO2 & Dust Score
Phase 2: SO2, & Ash Loading; Cloud

Solicit reviews from colleagues

SO2.nasa.gov
Earth Observatory
Volcano Clouds list
NASA Applied Sciences, NOAA/NESDIS Hazards
NASA Worldview “Themes” page

Rapid Response framework developed for volcano can be re-purposed to work with ANY AIRS data product.
Disaster Response - Volcano

JPL Disaster Response (M. Glasscoe), coordinates with HQ Disasters
Disaster Level - Tier 0, Tier 1 etc
Agung Volcano currently in play
Telecon Participants - JPL, NASA, USGS-AVO (Rick Wessels) - includes INSAR/GPS - ground deformation

1. Event status - what’s the situation, what are you seeing?
2. What products do you have?
3. Who are the end users?
4. Has anyone asked you for a product?

SO2 products - USGS says “as long as your NASA products are online we train people how to access them in their country, lots of people use NASA products, ..."

David S Green
Program Manager, Disasters
NASA Applied Sciences Program

- who are potential Event leads and alternates
- who are the key agencies in country
- in region
- contacts at dos/OES/ dos/ofda
- contacts at USGS , vdap ...
- contacts at UN agencies, WB, Red Cross,
- contacts at CEOS, Copernicus
- routine product inventory
- potential event specific products
<table>
<thead>
<tr>
<th>Currently in LANCE</th>
<th>Modifications</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO Total Column</td>
<td>NEW Surface Air Temp
NEW Surface Skin Temp
NEW Surface Relative Humidity
NEW Carbon Monoxide 500 hPa
NEW Methane 400 hPa</td>
<td>• New AIRS visualization algorithm delivery in progress (LANCE NRT first, then likely Non-NRT DAAC)</td>
</tr>
<tr>
<td>Dust Score</td>
<td>REVISED COLORBAR Temperature 500
REVISED COLORBAR Temperature 700
REVISED COLORBAR Temperature 850</td>
<td>• Colorbar delivered to GIBS for most of the new and revised images</td>
</tr>
<tr>
<td>Precip Estimate</td>
<td>REVISED COLORBAR Relative Humidity 500
REVISED COLORBAR Relative Humidity 700
REVISED COLORBAR Relative Humidity 850</td>
<td>• Visualization specs determined for most products</td>
</tr>
<tr>
<td>SO2 Load (Prata algorithm)</td>
<td>REMOVE Relative Humidity 400, 600
REMOVE Temperature 400, 600
REMOVE Carbon Monoxide total column</td>
<td>• LANCE updates will occur shortly</td>
</tr>
<tr>
<td>RH 400, 500, 600, 700, 850 hPa</td>
<td>NO CHANGE Prata SO2 Loading</td>
<td></td>
</tr>
</tbody>
</table>
AIRS Browse Tool - waiting in the wings
Showcase AIRS Imagery, can include other missions
Can show internal only imagery in development
New Visualization in progress - **GRAVITY WAVES**

Paper - “Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere”

Irfan Azeem (ASTRA LLC), Jia Yue (Hampton Univ), Lars Hoffmann (Julich), Steven D. Miller (CIRA), William C. Straka III (CIMSS), Geoff Crowley (ASTRA LLC)

- GWs are an important driver of the upper atmospheric circulation
- Near-simultaneous obs of GW event in stratosphere, mesosphere, and ionosphere over south central United States, tracked from convective source in troposphere to the ionosphere where it appears as a traveling ionospheric disturbance (TID)
- AIRS, Suomi NPP/VIIRS, and GPS TEC data
- Multi-sensor obs of TIDs and GWs can provide a unique perspective on ionosphere-atmosphere coupling

- AIRS gravity wave visualization in progress @ Goddard SVS
- Lori Perkins (SVS) working with Yue, Azeem
- Focus areas:
 - Tornado – Moore, Oklahoma in May 2013
 - SpaceX launch – Jan 17, 2016
- Possible debut at AGU
3D AIRS Visualization

Hurricane Irma, 9/5/17

Evan Manning, JPL

- **Cylinders** = volume of cloud detected by AIRS
- **Oval cylinder size** = proportion of clouds filling view area
- **Largest ovals** about 30 miles (45 kilometers) across
- **Height of cylinders** = cloud thickness (thickest clouds reach surface)
- **Colors** = cloud top temperatures
- 15x vertical exaggeration

https://photojournal.jpl.nasa.gov/catalog/pia21950
3D AIRS Visualization
Hurricane Irma, 9/5/17
Evan Manning, JPL

- **Cylinders** = volume of cloud detected by AIRS
- **Oval cylinder size** = proportion of clouds filling view area
- **Largest ovals** about 30 miles (45 kilometers) across
- **Height of cylinders** = cloud thickness (thickest clouds reach surface)
- **Colors** = cloud top temperatures
- 15x vertical exaggeration

The large-scale structure of clouds in and around Hurricane Irma is seen in this image created with data AIRS instrument on NASA's Aqua satellite. The clouds are typical of tropical areas both nearby and away from tropical areas.
Possibly explore more 3D with AIRS

• Hurricane 3D visualization shows cloud top temperature, but could show cloud thermodynamic phase, cloud particle size, etc

B. Kahn – “Sometimes the visualization...resonates not only for its scientific merit but for other, more nebulous reasons...the most well-liked comment on the NASA main page complimented NASA’s innovative approaches at visualization.”
Looking ahead...

Application focus areas
Drought
Influenza / Dengue / Zika (Health)
Volcano (Aviation, Disaster)
Wildfire (Fire Weather, Air Quality)
Temperature Inversion (Air Quality)
Carbon Monoxide (Air Quality)
Ammonia (Air Quality)
Cold Air Aloft (Aviation)
Deep Convective Clouds (Aviation)
NUCAPS / AWIPS

Web Site / User Guides
Upgrade to better serve community, attract new users
New pages: Applications, CO2, Calibration, Science Overview, FAQ, more
Webify User Guides

Imagery
LANCE/GIBS/Worldview
Anomaly products for GIBS/Worldview
CrIS/IASI image products
3D visualization development
SVS Visualization
GIS