Pollution over megacity regions from the Tropospheric Emission Spectrometer (TES) Karen Cady-Pereira¹, Jessica Neu², Vivienne Payne², Thomas Kurosu², Kevin Bowman², Ming Luo², Rick Pernak¹, Jennifer Hegarty¹, Eloise Marais³, Zitely Tzompa-Sosa⁴, Mark Shephard⁵ - 1. Atmospheric and Environmental Research (AER) - 2. Jet Propulsion Laboratory (JPL) - 3. Harvard University - 4. Colorado State University - 5. Environment and Climate Change Canada ### TES measures AQ around the world - July 2004: TES launched on AURA satellite - Main targets: O₃ and CO - Other species added: - CH₄, CO₂, NH₃, CH₃OH, HCOOH, PAN - Global surveys carried out through 2010 - Observations ~ 182 km apart - Also a number of more closely spaced special observations - January 2013: megacity observations start - simultaneous closely spaced observations of multiple trace gases (~ 12 km apart) - quantify urban pollution production, transformation and export. ### **Model summary** #### **MIROC-Chem** - Mexico - Lower resolution: 2.5x2.5 deg - 2013 forcing fields - Focus on accurate O₃ chemistry modeling - Limited NH₃ emissions - No separate modeling of HCOOH - Variable CH₃OH #### **GEOS-Chem** - Western Africa - High resolution: 0.5x0.667 deg - 2006 forcing fields - Includes NH₃ from - biomass burning (GFED4) - anthropogenic activity (EDGAR) - biofuel and charcoal - trash burning - Only secondary HCOOH production - Fixed CH₃OH ### NH₃ and HCOOH near Mexico City Focus on air quality near the surface: will use means of TES data over the first two or three layers above the surface ### Biomass burning in Mexico ## Biomass burning is strong over the Yucatan in the NH spring Mean May GFED C emissions (1997-2010) CO from AIRS and **AOD from MODIS** over the TES Mexico City transect also peak during biomass burning season and suggest fires might contribute significantly to pollution in the **Mexico City area** ### Biomass burning in Mexico #### **TES transect means** May 9 May 25 - Concomitant biomass burning products from TES (methanol, formic acid, ammonia) also point to air quality impacted by biomass burning - Contrasting days in spring 2013 provide a case study of TES sensitivity ### Possible BB sources #### **HYSPLIT four day back trajectories** ### SIMAT stations in the MCMA Daily means from SIMAT stations ## May 9 vs May 25 #### **TES** and MIROC mean profiles along transect ### **Western Africa- Lagos** Western Africa has one of the strongest biomass burning seasons (December-March) on Earth ### **High pollution in DJF** #### **HYSPLIT 10 day back trajectories** #### **Pollution sources** - Biomass burning - Petrochemical - Two-stroke engines - Generators - Trash burning - Traffic Sea breezes play important role 2015 El Nino may have also been influential Slow circulation - reduced venting ### **Seasonal Means** 7.0 7.5 8.0 5.5 6.0 7.0 7.5 Latitude #### TES: - high values in DJF and MAM - no gradient in HCOOH - moderate NH₃ over ocean in DJF and MAM - weak circulation #### GEOS-Chem 2006 1000-700 hPa mean #### GC: - higher values in DJF - sharp ocean/land gradients ### **A Tale of Two Cities** #### Beijing Delhi - Similar O3 and CO levels - Why is NH₃ different? ECLIPSE v5 emissions ## OMPS NO₂ over Beijing and Delhi - Much higher NO₂ levels in Beijing - Greater variability between winter and spring - But current trend is decrease in Beijing and no increase in Delhi ## SO₂ over Beijing and Delhi - Much higher SO₂ levels in Beijing winter - Some hotspots in Delhi winter and Beijing spring - Expected trend is decrease in Beijing and increase in Delhi ## Global view – O₃ ## Global view – NH₃ ## And now CrIS NH₃ #### TES (JJA average) #### CrIS (July mean) ## Summary - TES has processed data from January 2013 to March 2016 over 19 megacities - Data are closely spaced (12 km) and are taken approximately every two weeks - Species measured: O₃, CH₄, NH₃, CH₃OH, HCOOH, HDO, PAN, CO₂ - Data point to influences of biomass burning and other pollution sources - Also show different chemistry regimes in different cities - Ongoing work uses the new AIRS-OMI O3 product to provide context for interpreting the TES megacity measurements - Data are available on AVDC | City | Lat | Lon | |---------------|----------|----------| | Bangkok | 13.6383 | 100.304 | | Beijing | 39.8543 | 116.386 | | Buenos Aires | -34.7112 | -58.9112 | | Delhi | 28.957 | 77.4496 | | Dhaka | 23.6374 | 90.1974 | | Houston | 29.7203 | -95.2691 | | Istanbul | 40.9605 | 29.1336 | | Karachi | 24.6877 | 66.7348 | | Kolkata | 22.5168 | 88.4081 | | Lagos | 6.57795 | 3.25456 | | Los Angeles | 34.0724 | -118.146 | | MexicoCity | 19.1627 | -99.2384 | | Mumbai | 18.8821 | 72.8437 | | New York City | 40.7045 | -73.9673 | | Paris | 48.8499 | 2.37268 | | Sao Paulo | -23.5372 | -46.6846 | | Shenzhen | 22.3653 | 113.674 | | Tokyo | 35.5149 | 139.425 | ### **Information content** ### **Mexico City October pollution event** Megacity Pollution: The jointly retrieved TES/OMI near-surface ozone product shows very high ozone (~120 ppb) in Mexico City on a day with stable, stagnant air in the boundary layer. TES carbon monoxide, methanol, & formic acid (ozone precursors) are also elevated, as is the nitrogen reservoir peroxyacetyl nitrate (PAN) ### **Paris** HTAP and TES disagree on source of NH₃ ## Los Angeles puzzle - 1 High NH₃, CH₃OH and HCOOH in July 2013 correlate with higher AOD, but not with CO or O₃ - Early fire season - •But not from fire? - •HCOOH, CH₃OH generated locally over LA - •NH₃ has different source August 2013 ### **Western Africa- Lagos** Western Africa has one of the strongest biomass burning seasons (December-March) on Earth ### Los Angeles puzzle - 2 TES NH₃ and HTAP emissions peak within city High JJA TES peak north of the city HTAP underestimates NH₃ emissions here #### **TES JJA NH**₃transect -119.4 -118.8 -118.2 -117.6 -117.0