

# Recent Improvements on CH<sub>4</sub> Retrieval Using CrIS FSR Data -- suggestion for AIRS-V7

Xiaozhen (Shawn) Xiong

University of Maryland/ESSIC/CICS & NOAA/NESDIS/STAR



# **Outline**

- Requirement for CH<sub>4</sub> Product in J-1
  - ➤ The major sensitivity in mid-upper troposphere requires a good CH<sub>4</sub> firstguess in the lower troposphere
  - $\triangleright$  Recent increase of CH<sub>4</sub> and N<sub>2</sub>O also calls for an update of CH<sub>4</sub> and N<sub>2</sub>O firstguess
- Recent Improvements— Test Study Based on NUCAPS
  - > Update of firstguess: comparison with model and ATom aircraft measurements
  - > Other Improvements: Channel selection, re-tuning and Quality control (CH<sub>4</sub>QC);
- Assessment of the Improved Retrievals
  - **Comparison with model, AIRS, TCCON and ATom data;**
- Summary and Future works



# Requirements of Trace Gases Products from CrIS

#### Ozone



#### Methane



| EDR Attribute                      | СО           | CO <sub>2</sub> | CH <sub>4</sub>     |
|------------------------------------|--------------|-----------------|---------------------|
| Vertical Coverage                  | Total Column | Total Column    | <b>Total Column</b> |
| Horizontal<br>Resolution           | 100 km       | 100 km          | 100 km              |
| Mapping<br>Uncertainty, 3<br>sigma | 25 km        | 25 km           | 25 km               |
| Measurement<br>Range               | 0 – 200 ppbv | 300 – 500 ppmv  | 1100 – 2250 ppbv    |
| Measurement<br>Precision           | 15%          | 0.5% (2 ppmv)   | 1% (~20 ppbv)       |
| Measurement Accuracy               | ±5%          | ±1% (4 ppmv)    | ±4% (~80 ppbv)      |
| Refresh                            | 24 h         | 24 h            | 24 h                |
| Note                               |              |                 |                     |



# Sensitivity of CrIS to Atmospheric CH<sub>4</sub>



**Example of Averaging Kernels** 



- •Major sensitivities are in the mid-upper troposphere – not near the surface where the variation is impacted by emissions;
- •Sensitivities in the polar are lower than in tropics and mid-latitude



### Simple Estimate of the CH<sub>4</sub> Total Amount Error

assuming 5% error of CH<sub>4</sub> profile in lower troposphere (below 800 hPa)



2/17/2015

Assuming 5% error of CH<sub>4</sub> profile in lower troposphere(below 800 hPa), the error in total amount is about 1.2%.

to meet the requirement of total amount in 1%(precision) is hard if without a good a priori, particularly in the lower troposphere







#### Significant Increase of CH<sub>4</sub> in the past 10 years



Downloaded from https://www.esrl.noaa.gov/gmd/ccgg/trends\_ch4/

We built a fixed firstguess in AIRS-V6 in about 10 years ago → it helps us to check the possibility to monitor the trend





#### Annual Increase Rate of CH<sub>4</sub> from AIRS-V6 and its **Comparison with NOAA Ground-based Measurements**



Zou, M. and X. Xiong et al., 2017, Trend Analysis of Atmospheric Methane Using Space-borne and Ground-based Measurements, Remote Sensing (Submitted).

Jan15

Jul12



#### Nearly Linear Increase of N<sub>2</sub>O



Downloaded from https://www.esrl.noaa.gov/gmd/hats/insitu/cats/conc.php?site=mlo&gas=n2o

### + 0.26%/yr

# AIRS can be used to monitor the N<sub>2</sub>O trend (with a fixed first-guess)



Xiong, et al., 2014, Retrieval of nitrous oxide from Atmospheric Infrared Sounder: Characterization and validation, JGR, 119, 9107–9122, doi:10.1002/2013JD021406.



### Questions

Even though we have some capability to monitor the CH<sub>4</sub> trend using AIRS data (with a fixed first-guess), should we include the trend in the AIRS-V7 to reprocess the data, so that we can have a better product, esp. the total amount?

Similarly for N<sub>2</sub>O ....

Even we do not want to add the trend for future retrieval, at least for CrIS we need to update CH<sub>4</sub> and N<sub>2</sub>O firstguess to be consistent with current observation



# Update of CH<sub>4</sub> First-guess– based on JAMSTEC Model



--- Old fg is the one used in AIRS-V6 and NOAA IASI system



# Using the Atmospheric Tomography Mission (ATom) Data for QC and Validation (July 29, 2016 – August 23, 2016)



#### **Examples of selection of flight lags**







#### **Comparison of CH<sub>4</sub> firstguess with ATom Aircraft Measurements**



More improvement to the CH<sub>4</sub> firguess in the southern hemisphere is needed.



#### Comparison of N<sub>2</sub>O firstguess with ATom Aircraft Measurements





#### Simple Estimate of the Impact of N<sub>2</sub>O firstguess to CH<sub>4</sub> Retrievals





adding 4.5ppn in N<sub>2</sub>Ofg and compared the difference of the retrieved CH<sub>4</sub>; Used one day data on 2/17/2015;

➤ An update N<sub>2</sub>O from AIRS-V6 is necessary for improving CH<sub>4</sub> retrieval





# Other Optimizations(1): Channel Selection



Due to the spectral resolution of CrIS (0.625cm<sup>-1</sup>), our option is not many; Not only consider the information content, I also checked the fitting error and removed some channels with strong N<sub>2</sub>O and HNO<sub>3</sub> absorption; 70 channels (red) are selected (it was 84 in NUCAPS V2.0.5.4, Blue).



# Comparison of Jacobian



Upper left is V2.0.5.4 Lower right is the recent one





### Other Optimizations(2): Re-tuning to CH₄ Bands



- ➤ The exist of uncertainty of CH<sub>4</sub> absorption (line-mixing) near 1306 cm<sup>-1</sup> (Xiong et al., 2008, JGR; Xiong et al., 2015, AGU talk);
- ➤ Cloud-clearing is a good thing to increase the yield of retrievals, but it also contaminate trace gases products; Also CH<sub>4</sub> is very sensitive to upstream water vapor products. So a re-tuning using the upstream T, q retrievals products and cloud-clear radiance has been made.

# Comparison of CH<sub>4</sub> from AIRS, IASI and CrIS (20160508, @515hPa) – NO QC to CrIS CH<sub>4</sub> products



DOAR









# Other Optimizations(3): Quality Control (CH<sub>4</sub>QC)



- For two granules
- Left panels: red lines are from version V2.0.5.4 (delivered in July) and black lines are from updated retrievals;
- Right panels: Profiles from updated retrieval and using CH<sub>4</sub>QC (=0,1)







## Example of CH<sub>4</sub> map after Preliminary CH<sub>4</sub>QC



Preliminary CH<sub>4</sub>QC is tailored to CH<sub>4</sub> products based on the DOF, surface temperature, chisq etc.







# Yields after using CH<sub>4</sub>QC

50.8%

| Descending  | Yield (%) | Percentage relative to NO CH <sub>4</sub> QC (%) |
|-------------|-----------|--------------------------------------------------|
| QC=0 (best) | 37.4      | 45.0                                             |
| QC=1 (good) | 13.4      | 16.0                                             |
| QC=2 (bad)  | 49.2      |                                                  |

54.7% -

| Ascending | Yield (%) | Percentage relative to NO CH <sub>4</sub> QC (%) |
|-----------|-----------|--------------------------------------------------|
| QC=0      | 43.6      | 52.0                                             |
| QC=1      | 11.1      | 13.2                                             |
| QC=2      | 45.2      |                                                  |



#### **Assessment**

- Comparison with AIRS (515 hPa)
- Comparison with MODEL ( 4 different layers and total column amount)
- Comparison with TCCON (total column amount)
- Comparison with ATom (300-600 hPa)



### Comparison of CH<sub>4</sub> at 500 hPa with AIRS



Upper left is V2.0.5.4 Lower right is the recent one





# Comparison of CH<sub>4</sub> with Model at Four Layers (260, 515,706 and 852 hPa)



Upper left is V2.0.5.4 Lower right is the recent one





# Comparison of CH<sub>4</sub> Total Amount with Model



# Upper left is V2.0.5.4 Lower right is the recent one





# Comparison of CrIS xCO/xCO<sub>2</sub>/xCH<sub>4</sub> with TCCON Measurements







- Data of 10 days is used;
- ■This is a simple comparison by averaging TCCON data within 1 hours of satellite overpass and satellite data within 200 km over the ground site;
- ■Better agreement can be achieved if using averaging kernels



# **Comparison with ATom data (Preliminary)**



Within 200 KM

No QC tailored to trace gases





# **Summary and Future Works**

- 1. The major sensitivity of CrIS is in the mid-upper troposphere. In order to meet the requirement in total amount, a good firstguess is really needed.
- 2. Rapid increase of CH<sub>4</sub> since 2007 and almost linear increase of N<sub>2</sub>O request an update to CH<sub>4</sub> and N<sub>2</sub>O firstguess in AIRS-V6;
- 3. Recent test of improvements (firstguess, channel selection, tuning) are promising, but more works need to be done ...
- 4. Cloud-clearing is a major part in AIRS and NUCAPS retrieval systems, but we should be very careful to set QC for all trace gases.

A question is: should we add the increase trend in the firstguesss of  $CH_4$  and  $N_2O$  in AIRS-V7?

I vote "YES", as it impacts other products, i.e. q



