Recent Improvements on CH₄ Retrieval Using CrIS FSR Data -- suggestion for AIRS-V7 Xiaozhen (Shawn) Xiong University of Maryland/ESSIC/CICS & NOAA/NESDIS/STAR # **Outline** - Requirement for CH₄ Product in J-1 - ➤ The major sensitivity in mid-upper troposphere requires a good CH₄ firstguess in the lower troposphere - \triangleright Recent increase of CH₄ and N₂O also calls for an update of CH₄ and N₂O firstguess - Recent Improvements— Test Study Based on NUCAPS - > Update of firstguess: comparison with model and ATom aircraft measurements - > Other Improvements: Channel selection, re-tuning and Quality control (CH₄QC); - Assessment of the Improved Retrievals - **Comparison with model, AIRS, TCCON and ATom data;** - Summary and Future works # Requirements of Trace Gases Products from CrIS #### Ozone #### Methane | EDR Attribute | СО | CO ₂ | CH ₄ | |------------------------------------|--------------|-----------------|---------------------| | Vertical Coverage | Total Column | Total Column | Total Column | | Horizontal
Resolution | 100 km | 100 km | 100 km | | Mapping
Uncertainty, 3
sigma | 25 km | 25 km | 25 km | | Measurement
Range | 0 – 200 ppbv | 300 – 500 ppmv | 1100 – 2250 ppbv | | Measurement
Precision | 15% | 0.5% (2 ppmv) | 1% (~20 ppbv) | | Measurement Accuracy | ±5% | ±1% (4 ppmv) | ±4% (~80 ppbv) | | Refresh | 24 h | 24 h | 24 h | | Note | | | | # Sensitivity of CrIS to Atmospheric CH₄ **Example of Averaging Kernels** - •Major sensitivities are in the mid-upper troposphere – not near the surface where the variation is impacted by emissions; - •Sensitivities in the polar are lower than in tropics and mid-latitude ### Simple Estimate of the CH₄ Total Amount Error assuming 5% error of CH₄ profile in lower troposphere (below 800 hPa) 2/17/2015 Assuming 5% error of CH₄ profile in lower troposphere(below 800 hPa), the error in total amount is about 1.2%. to meet the requirement of total amount in 1%(precision) is hard if without a good a priori, particularly in the lower troposphere #### Significant Increase of CH₄ in the past 10 years Downloaded from https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/ We built a fixed firstguess in AIRS-V6 in about 10 years ago → it helps us to check the possibility to monitor the trend #### Annual Increase Rate of CH₄ from AIRS-V6 and its **Comparison with NOAA Ground-based Measurements** Zou, M. and X. Xiong et al., 2017, Trend Analysis of Atmospheric Methane Using Space-borne and Ground-based Measurements, Remote Sensing (Submitted). Jan15 Jul12 #### Nearly Linear Increase of N₂O Downloaded from https://www.esrl.noaa.gov/gmd/hats/insitu/cats/conc.php?site=mlo&gas=n2o ### + 0.26%/yr # AIRS can be used to monitor the N₂O trend (with a fixed first-guess) Xiong, et al., 2014, Retrieval of nitrous oxide from Atmospheric Infrared Sounder: Characterization and validation, JGR, 119, 9107–9122, doi:10.1002/2013JD021406. ### Questions Even though we have some capability to monitor the CH₄ trend using AIRS data (with a fixed first-guess), should we include the trend in the AIRS-V7 to reprocess the data, so that we can have a better product, esp. the total amount? Similarly for N₂O Even we do not want to add the trend for future retrieval, at least for CrIS we need to update CH₄ and N₂O firstguess to be consistent with current observation # Update of CH₄ First-guess– based on JAMSTEC Model --- Old fg is the one used in AIRS-V6 and NOAA IASI system # Using the Atmospheric Tomography Mission (ATom) Data for QC and Validation (July 29, 2016 – August 23, 2016) #### **Examples of selection of flight lags** #### **Comparison of CH₄ firstguess with ATom Aircraft Measurements** More improvement to the CH₄ firguess in the southern hemisphere is needed. #### Comparison of N₂O firstguess with ATom Aircraft Measurements #### Simple Estimate of the Impact of N₂O firstguess to CH₄ Retrievals adding 4.5ppn in N₂Ofg and compared the difference of the retrieved CH₄; Used one day data on 2/17/2015; ➤ An update N₂O from AIRS-V6 is necessary for improving CH₄ retrieval # Other Optimizations(1): Channel Selection Due to the spectral resolution of CrIS (0.625cm⁻¹), our option is not many; Not only consider the information content, I also checked the fitting error and removed some channels with strong N₂O and HNO₃ absorption; 70 channels (red) are selected (it was 84 in NUCAPS V2.0.5.4, Blue). # Comparison of Jacobian Upper left is V2.0.5.4 Lower right is the recent one ### Other Optimizations(2): Re-tuning to CH₄ Bands - ➤ The exist of uncertainty of CH₄ absorption (line-mixing) near 1306 cm⁻¹ (Xiong et al., 2008, JGR; Xiong et al., 2015, AGU talk); - ➤ Cloud-clearing is a good thing to increase the yield of retrievals, but it also contaminate trace gases products; Also CH₄ is very sensitive to upstream water vapor products. So a re-tuning using the upstream T, q retrievals products and cloud-clear radiance has been made. # Comparison of CH₄ from AIRS, IASI and CrIS (20160508, @515hPa) – NO QC to CrIS CH₄ products DOAR # Other Optimizations(3): Quality Control (CH₄QC) - For two granules - Left panels: red lines are from version V2.0.5.4 (delivered in July) and black lines are from updated retrievals; - Right panels: Profiles from updated retrieval and using CH₄QC (=0,1) ## Example of CH₄ map after Preliminary CH₄QC Preliminary CH₄QC is tailored to CH₄ products based on the DOF, surface temperature, chisq etc. # Yields after using CH₄QC 50.8% | Descending | Yield (%) | Percentage relative to NO CH ₄ QC (%) | |-------------|-----------|--| | QC=0 (best) | 37.4 | 45.0 | | QC=1 (good) | 13.4 | 16.0 | | QC=2 (bad) | 49.2 | | 54.7% - | Ascending | Yield (%) | Percentage relative to NO CH ₄ QC (%) | |-----------|-----------|--| | QC=0 | 43.6 | 52.0 | | QC=1 | 11.1 | 13.2 | | QC=2 | 45.2 | | #### **Assessment** - Comparison with AIRS (515 hPa) - Comparison with MODEL (4 different layers and total column amount) - Comparison with TCCON (total column amount) - Comparison with ATom (300-600 hPa) ### Comparison of CH₄ at 500 hPa with AIRS Upper left is V2.0.5.4 Lower right is the recent one # Comparison of CH₄ with Model at Four Layers (260, 515,706 and 852 hPa) Upper left is V2.0.5.4 Lower right is the recent one # Comparison of CH₄ Total Amount with Model # Upper left is V2.0.5.4 Lower right is the recent one # Comparison of CrIS xCO/xCO₂/xCH₄ with TCCON Measurements - Data of 10 days is used; - ■This is a simple comparison by averaging TCCON data within 1 hours of satellite overpass and satellite data within 200 km over the ground site; - ■Better agreement can be achieved if using averaging kernels # **Comparison with ATom data (Preliminary)** Within 200 KM No QC tailored to trace gases # **Summary and Future Works** - 1. The major sensitivity of CrIS is in the mid-upper troposphere. In order to meet the requirement in total amount, a good firstguess is really needed. - 2. Rapid increase of CH₄ since 2007 and almost linear increase of N₂O request an update to CH₄ and N₂O firstguess in AIRS-V6; - 3. Recent test of improvements (firstguess, channel selection, tuning) are promising, but more works need to be done ... - 4. Cloud-clearing is a major part in AIRS and NUCAPS retrieval systems, but we should be very careful to set QC for all trace gases. A question is: should we add the increase trend in the firstguesss of CH_4 and N_2O in AIRS-V7? I vote "YES", as it impacts other products, i.e. q