Quantifying Atmospheric Methane Growth Rates from AIRS with Giovanni

Elliot Sherman^{1,2}, Jennifer Wei^{1,2}, Bruce Vollmer², David Meyer²

¹ADNET Systems, Inc., ²NASA GSFC Earth Sciences Data and Information Services Center (GES DISC)
Presenting Author: Elliot Sherman, elliot.m.sherman@nasa.gov

Motivation

- Methane is a strong greenhouse gas.
- •Use methane emission estimates to better understand trends in atmospheric methane growth rates.
 - ⇒ Link the bottom-up and top-down perspectives

Goal

- 1. Use Giovanni and GES DISC data to study the distributions and trends of trace gases.
 - Example: AIRS methane growth rates and CMS methane emissions data.
- 2. Demonstrate how to use Giovanni to expedite the exploration of data.

Outline

- 1. Introduce Carbon Monitoring System data
- 2. Show AIRS methane growth rates
- 3. Can we use emissions data to understand the causes of AIRS methane growth rate trends?
 - Spoiler alert: I don't know, but you might.
- 4. Potential for box-modeling?
 - Discuss caveats and challenges

GES DISC CMS data

https://disc.gsfc.nasa.gov/

- NASA Carbon Monitoring System (CMS)
 - Quantify carbon reservoirs and fluxes
 - Uses numerous instruments and models to collect data
 - 10 datasets CMS datasets for various carbon cycling processes (fires, transportation, terrestrial and oceanic NPP, fossil fuel sources)
 - Bulk carbon fluxes
 - Global domain with varying temporal resolutions and time periods
 - CMS methane emission data for:
 - North America, Mexico, Canada
 - resolution of 0.5x0.667 (NA) and 0.1x0.1 (CA,MX)

Compute atmospheric methane growth rates with Giovanni

- Select variable (methane total column- AIRX3STM v6)
- Subset temporal and spatial domains.
- 3. Select service (Time Series: Area-Averaged)
- 4. Hit "Plot Data" and wait ~2 minutes
- 5. Download .csv file
- Total time is ~10 minutes.
- Monthly products only

AIRS atmospheric methane growth rates

Currently do not have long enough CMS methane time series to study the trends CH_4 growth rate = $CH_{4month(n)} - CH_{4month(n-12)}$ (Simpson et al. 2006; Rigby et al. 2008)

How to calculate atmospheric methane growth rates

How to calculate atmospheric methane growth rates

- Larger variability in the maximum growth rate for 90N to 30N than for other domains
- Can we attribute seasonal trends and variability in maximums in the northern hemisphere to source or sink processes?

Carbon Monitoring System (CMS) methane emissions data

DJF 2010-2011 methane emission average (Gg/year/cell)

JJA 2010-2011 methane emission average (Gg/year/cell)

https://disc.gsfc.nasa.gov/datasets/CMS_CH4_FLX_NA_V1/summary?keywords=ch4 DOI: 10.5067/RF3R3G9I3UVX

Carbon Monitoring System (CMS) methane emissions data

- Must also consider influence of sinks and air mass advection on methane growth rates
- compare sink and advection terms with observations

$$\frac{dCH4}{dt} = \Sigma sources - \Sigma sinks + \nabla CH4$$

Box modeling

- Can AIRS and CMS methane data be used as a constraint for methane sinks?
- Solve for sinks, compare methane losses to other estimates.
- Must consider uncertainty and error.

Conclusions

Interesting trends in AIRS methane growth rates exist.

- CMS data could be used in concert with AIRS data to better understand these trends.
 - Caveats: Uncertainty in the data and short CMS time period
- This analysis could be expanded to utilize other CMS datasets and AIRS variables.