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Motivation
• Mass loss from GrIS is accelerating, with runoff from surface melt 

dominating SMB since 2008 [Enderlin et al., 2014].
• SMB = Precipitation – Evaporation/Sublimation - Runoff

– Precipitation & surface runoff are the dominant source & sink terms of the GrIS
SMB.
• Been studied extensively
• Relatively little attention has been given to the smallest component of GrIS SMB.

– Future contribution & magnitude of this term to the overall SMB remains 
uncertain.



Motivation
• In recent years, satellite data have shown considerable 

improvements in estimating near-surface air 
temperature & humidity using new retrieval techniques 
[Dong et al., 2010], but remain highly underutilized. 

• Here we introduce a new, independent GrIS vapor flux 
dataset between 2003-2014 that is produced using 
AIRS data & a model adapted from Boisvert et al., [2013]
that was created for use over Arctic sea ice. 
– Compared with in situ observations & also an independent 

regional atmospheric climate model: RACMO.



Data: AIRS

• AIRS is a cross-track high spectral resolution 
infrared sounder onboard NASA’s Aqua satellite, 
launched on May 4, 2002. 

• Data used in this study: skin temperature, near 
surface air temperatures & specific humidity 
depending on pressure level (1000, 925, 850, 700 & 
600 hPa dependent on surface elevation from 
ICESat) & associated geopotential heights.



Quality of AIRS data
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Overall, the monthly 
variations are still captured 
well with the AIRS data.
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BMF13 Model
• GrIS vapor flux (E) is estimated from the Boisvert et al. 

[2013] moisture flux model (herein BMF13) with a few 
adaptations made for Greenland:

• E is estimated from (1) using Monin-Obukhov similarity 
theory & an iterative calculation scheme based on 
Launiainen and Vihma [1990]

• Modifications: 
– The flux algorithm of Grachev et al [2007] for stable 

conditions over ice. 
– The effective wind speed, which includes a parameter for 

gustiness that is different in stable & unstable boundary 
conditions [Andreas et al., 2010]. 

(1)



BMF13 Model
• On GrIS, surface roughness is created by 

glacier dynamics & surface-atm interactions. 
– Affects boundary layer processes through the 

aerodynamic roughness length. 
• A surface roughness data product from the 

Multi-angle Imaging SpectroRadiometer
(MISR) [Nolin et al., 2002] is used to calculate 
CEz in (1). 
– Created via MISR angles of ± 60 degrees & nadir
– Valid during the sunlit season with average 

roughness values ranging from 11 cm in April to 
roughly 20 cm in July. 
• For the remainder of the year 10 cm was used because 

in winter the surface is not as rough due to snow 
covering the bare ice. 

• 10 m wind speeds taken from ERA-Interim.
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BMF13 Vapor Flux Climatology 2003-2014

Month	

kg
/m

2 	p
er
	d
ay
	

300	m			<	Eleva8on	
300	m		<	Eleva8on	<	1500	m	
1500	m	<	Eleva8on	<	3000	m	
3000	m	<	Eleva8on	

Vapor	Flux	at	Different	Eleva3ons	

• Largest interannual variability occurs in the summer (0.067 Gt day-1), 
& smallest variability occurs in the winter (0.020 Gt day-1). 
– Positive vapor flux (summer) is about five times the magnitude of the 

deposition (winter). 
– The largest vapor 
flux deviation occurs in 
elevations between 
0.3 km -1.5 km (near the 
edge of the ice sheet)
– Smaller deviations 
occur at higher 
elevations. 



Comparing July 2012 (high melt) and 2013 (average melt)
• July 2012: 0.88 Gt more mass lost by the vapor flux than the average (2003-2014), & 1.53 Gt

more than in 2013 (more along ice edge & at higher elevations). 
• July 2013: more snowfall, & less mass loss to sublimation than 2012. 

– Contributed to an overall smaller mass loss in 2013 compared to 2012.
– 2013 Vapor flux was very similar to the 2003-2014 average.

• 2012 vapor flux produced three high sublimation spikes around 12 July, 22 July & 29 July. 
– Consistent with the findings from Nghiem et al. [2012], who showed concurrent large melt events 

covering the majority of the ice sheet. 
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RACMO2.3
• Regional Atmospheric Climate Model version 2.3 (RACMO2.3) focused on the GrIS

[Noël et al., 2015] is used to compare with the BMF13 product. 
• RACMO2.3 is forced by ERA-Interim at its lateral boundaries & combines 2 weather 

prediction models: dynamics from the High Resolution Limited Area Model 
(HIRLAM) [Unden et al., 2002] & physical processes from ECMWF [ECMWF-IFS, 2008]. 

• RACMO2.3 vapor flux product that we use here DOES NOT include drifting snow 
sublimation [Lenaerts et al., 2012]. 

• Thus in order to compare accurately with the BMF13 model we will only use data 
points where there is no drifting snow sublimation present in RACMO2.3. 
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Comparison with RACMO2.3
• RACMO2.3 & BMF13 are similar in shape & magnitude of the annual cycle, 

except in June-July.
• Wintertime deposition is slightly stronger in BMF13 (Feb & Dec)
• Yearly vapor flux average: BMF13 & RACMO2.3 differ by 7.1 Gt yr-1. 

– Due to the larger flux in the summer months from RACMO2.3, 0.05 Gt day-1

larger than in BMF13. 
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Comparison with RACMO2.3:
Different Elevations

• The vapor flux differences vary across 
ice sheet elevations, with largest 
differences in the summertime. 
– Elevations 300 - 1500 m a.s.l (along the 

edges of the ice sheet): annual vapor 
differ by 1.9x10-3 Gt day-1. Deposition 
very close to zero. 

– Elevations 1500 - 3000 m a.s.l (majority 
of the ice sheet): RACMO2.3 is slightly 
larger than BMF13. 
• Summer: sublimation rates were 3.05x10-2

Gt day-1 larger in RACMO2.3 
• Winter: Deposition rates 1.15x10-2 Gt day-1

less than BMF13.
– Elevations greater than 3000 m a.s.l, the 

annual vapor flux is close to zero, with 
BMF13 being slightly positive & 
RAMCO2.3 being slightly negative. 
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Comparison with 
RACMO2.3: 

Accumulation & Ablation 
Zones

• Northern half of GrIS
(regions 1, 2, 7 & 8) 
vapor flux is very similar for 
both models. 

• Southern end of GrIS (3, 4, 5 & 
6) show larger discrepancies. 
– Winter are very similar, but in 

summer BMF13 is higher 
(roughly double) than 
RACMO2.3 values.

• Coastal areas grid boxes with 
the most surface heterogeneity 
show the largest differences.
– Due to larger footprint & 

resolution from AIRS.
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Comparison with RACMO2.3: 
Spatial Differences

• Spatially BMF13 & RACMO2.3 are very similar.
• JJA: RACMO2.3 shows sublimation over the entire ice sheet, whereas the BMF13 

model produces a small amount of deposition at higher elevations (between 1500 -
3000 m a.s.l) over the central ice sheet. 

• SON & DJF: magnitude of deposition is similar except for a few areas of larger 
deposition rates in the BMF13 product along the southern edge of the ice sheet. 
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Reasons for Differences: Input Data
• Specific humidity from AIRS tends to be lower in all seasons at elevations greater than 3000 m a.s.l, & for 

all elevations in the winter months.

• AIRS shows higher humidity in MAM & JJA, along the southern tip of the ice sheet, corresponding with 

comparisons of specific humidity at the South Dome GC-Net Station & QAS_U & TAS_U PROMICE 

stations. 

• Skin temperatures from AIRS are higher MAM & JJA, but lower in SON. 

• Despite these differences, the magnitudes & behavior of the vapor flux at all elevations are very similar. 

Differences at the surface tend to be comparable with differences at 2 m, resulting in a similar gradient. 
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Conclusions
• Goal: Produce a vapor flux data set for GrIS using remotely sensed data from AIRS. 

– AIRS Pros: 1) Full coverage of the entire ice sheet, compared to point measurements 
from AWS

– 2) AIRS has small errors compared with the GC-Net and PROMICE in situ observations. 
• A combined uncertainty of 44% in the BMF13 vapor flux product was found, & not including the southeast 

coastal stations the RMSE is reduced to 25%. 

– 3) Independent comparison with regional climate models, which use reanalysis data as 
boundary conditions. 

– 4) When compared with RACMO2.3, results agreed qualitatively well on both a spatial &
temporal scale.

• No single method to estimate the vapor flux is expected to be perfect & many 
uncertainties remain. 
– AIRS Cons: 1) footprint is much larger than that of RACMO2.3, footprint contamination 
– 2) Temporal scale is only twice daily thus probably misses some variations in the 

temperature and humidity that RACMO2.3 captures. 
• Vapor Flux: 14.6 ± 3.6 Gt/year in 2003-2014, equivalent to 6 ± 2% of the SMB 

between 2003-2014.
– Although no trends in the vapor flux were found over the 2003-2014 period, there were 

large interannual variations. 
• The vapor flux is important for future projections of mass loss from GrIS and its 

contribution to sea level rise.
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