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Low Cloud Feedback

Climate sensitivity is the most importa
relevant question in climate science.

* The most uncertain aspect of climate sensitivity is
cloud feedback.

* Low Cloud changes have the greatest leverage on
cloud feedback in the current generation of climate
models.

# [PCC AR5 said cloud feedback is likely positive (66%)
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FIG. 1. Annual and ensemble mean change in (a) cloud fraction,
(b) cloud fraction-weighted cloud-top pressure, and (c) cloud
fraction—weighted natural logarithm of optical depth per degree
global average surface air temperature increase. Stippling indicates
regions where =75% of the models agree on the sign of the field
plotted. The dashed lines are the +30° and +60° latitude lines.




Ensemble Mean LW Cloud Feedback Components
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FIG. 3. Annual and ensemble mean (a) LW cloud feedback and components due to the (b) proportionate change
in cloud fraction, (c) change in cloud vertical distribution, (d) change in cloud optical depth distribution, and (e)
residual term. Stippling indicates regions where =75% of the models agree on the sign of the field plotted.



Ensemble Mean SW Cloud Feedback Components
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FIG. 4. As in Fig. 3, but for the SW cloud feedback partitioning.



Ensemble Mean Net Cloud Feedback Components
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FIG. 5. As in Fig. 3, but for the net cloud feedback partitioning.



* For LWCF
cancellation
between colder
clouds and fewer
clouds.

* For SWCF consistent
positive feedback
due to reductionin
cloud coverage.

* Net Cloud Feedback
is robustly positive
because of fractional
area decrease,
especially of low
clouds.
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FIG. 8. Zonal, annual, and ensemble mean (a) LW, (b) SW, and (c) net cloud feedbacks
partitioned into components due to the change in cloud amount, altitude, and optical depth,
and the residual term. Lines are solid where =75% of the models agree on the sign of the field
plotted, otherwise dashed. The abscissa is the sine of latitude, so that the visual integral is
proportional to watts per kelvin of mean surface air temperature change.



What gives us confidence?

+ GCMs consistM
e

* We have a robust theory that explains it.
* We have observational evidence that supports it.




Robust Theory?
For low clouds toh—

1) radiative cooling of the boundary layer

2) drives cloud formation

3) Convection in PBL drives turbulence and entrainment at the top of
the cloud.

4) Entrainment drying becomes more efficient due to thermodynamics
at higher temperatures.

* more efficient generation of entrainment with warming
*  bigger humidity jump at inversion with warming

5) Entrainment mixing of dry air suppresses cloud fraction with
warming, especially in trade cumulus cases.

e.g. Bretherton, 2015, Phil.Trans.Roy.Soc.,



Physical Mechanisms - Low Clouds
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Figure 1. Marine boundary-layer stratocumulus cloud feedback mechanisms. In the figure, Sc denotes stratocumulus, RH
denotes relative humidity, and FT denotes the free troposphere. Adapted from [23]. (Online version in colour.)

Bretherton, 2015, Phil.Trans.Roy.Soc.,



Observational Analysis

Assumption

‘\

* Natural variations of the current climate can provide
relationships between variables that guide our
understanding of climate change.

* This can be tested with climate models, for which it
seems to work.

* Thus we have some confidence that observed natural
variations in the current climate can give us insights in
to climate feedbacks.




Observations

‘Low Cloud Coverag DIS ¢-6, r .

* Temperature — AIRS — —
« Estimated Inversion Strength — AIRS (T and q)

* Free troposphere Humidity — AIRS 650-450hPa

* Vertical Velocity - ERA-I omega 550hPa*

* Wind Speed — ERA-I 1ometer wind speed®

* Primary analysis was conducted with 8-day means of
# 1°x1° spatial averages

*the reanalysis variables turn out to be less important, so the result is
almost entirely remote sensing and independent of climate models.




AV EWS S

* Partial least squares analysis, to-mini
with colinearity, e.g. Temperature anc
* Separate analysis of different regions
* 40°N-40°S
* 20°x20° subregions

* Dynamical subregions — trade cumulus, stratocumulus,
and all
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FIG. 2. The climatological LCC from MODIS from 8-day-averaged data. The regression model is trained using
data from each of the 20°-latitude bands between 40°S and 40°N (orange symbols), each of the stratocumulus-
dominated regions that capture the TrCu-Sc transition (Qu et al. 2015) (shown in green), and each of the subtropical

TrCu regimes (shown in blue). These regions are listed in Table 2. The colored symbols next to each region cor-
respond to the symbol used in the remaining figures to denote that region.

TABLE 2. Latitude and longitude ranges of the regional subsets

analyzed in this study. These regions are shown in Fig. 2.
Many separate regions lyzed in this study. These regi hown in Fig
are u Sed to teSt Region Lat range Lon range
e e o 40°S—40°N 40°-20°S All longitudes
SenS|t|v1ty of the results 20°5-0° All longitudes
. 0°-20°N All longitudes
to sam P lin g 20°-40°N All longitudes
TrCu-Sc (Qu et al. 2015) 10°-30°S 110°-70°W
Both trade cumulus 10°-30°S 25°W-1SE
20°-40°S 75°-115°E
{ 11 15°-35°N 155°-115°W
regions and traditional A e
: TrCu 10°-25°S 180°-120°W
stratocumulus regions. i i
10°-25°S 40°-10°W
10°-25°N 120°E-130°W

10°-25°N 80°-40°W




uality of the
Regressions

Regressions
do a
‘reasonable’
job of
reproducing
the observed
variability
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F1G. 3. (left) Evaluation of the ability of the regression models trained in each subregion to
reproduce the observed LCC over 40°S—40°N at 1° X 1° spatial resolution and 8-day temporal
resolution and (right) when the observational record of LCC is averaged to create a 12-month
climatology at 1° X 1° spatial resolution. The regression models being evaluated are differ-
entiated by region and subregion (see Fig. 2). The region used to train the regression model
noted on the x axis. Regression coefficients, RMSE, and mean-bias for the regression models
trained in each of the subregions are shown as dots. Scatter along the x axis has been added for
visual clarity. The units of RMSE and mean bias are in units of percent cloud cover.



Parameter Sensitivit

Results
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Apply to Global Warming

1K global warmir CM’s give apr he.
changes. —

* SST +1K

* EIS 0.2K

* Free troposphere relative humidity ~1%
* Omega ~+0

* Surface wind speed ~-0

Given the regression coefficients obtained, only
SST and EIS make a significant difference in LCC



Global Warming

from CMIP5 models for a 1K SST
warming, we obtain a robust
estimate of a LCC decrease of 1-
1.4%/K .

* Changes in Stratocumulus to
Cumulus transition zones are more
uncertain, consistent with previous
estimates.

* If we take the predictions of EIS
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F1G. 5. The change in LCC inferred from a uniform increase in
SST of 1K accompanied by an increase in EIS of 0.2K. The co-
efficients from the regression models shown in Fig. 4 are used to
calculate the change in LCC. The region that the regression model
was trained in is noted on the x axis. The LCC change calculated
using the coefficients of Qu et al. (2015) and Seethala et al. (2015)
for EIS + 02K and SST + 1K are also shown. The symbols used
for each region correspond to the key in Fig. 2.



Conclusion

cumulus low cloudfrac Aarming
and climatologicial variations of observed , aNa
using a ratio of EIS to SST change of 0.2K/K from GCMs.
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