An OSSE Investigating a Constellation of 4-5 µm Infrared Sounders

Will McCarty^{1,2}

¹Global Modeling and Assimilation Office ²NASA Goddard Space Flight Center

J. Blaisdell³, M. Cordero-Fuentes^{1,4}, D. Carvalho^{1,5}, M. Chattopadhyay^{1,4}, R. Errico^{1,5}, R. Gelaro^{1,2}, L. Kouvaris³, I. Moradi^{1,6}, S. Pawson^{1,2}, N. Prive^{1,5}, M. E. Sienkiewicz^{1,4}, and J. Susskind²

**Science Applications International Corporation

**Science Systems and Applications, Inc.

**Goddard Earth Sciences Technology and Research

Gearth System Science Interdisciplinary Center

24 October 2017

Brief Project Overview

Results presented based on an OSSE for MISTiC™ Winds

- MISTiC™ Winds provide High Spatial/Temporal Resolution Temperature and Humidity Soundings of the Troposphere
- The observing strategy is to retrieve atmospheric state and motion via LEO Constellation of MicroSats
 - Infrared spectrometer sampling the midwave
 - With the constellation approach, temporally subsequent sets of retrievals can then be used to perform feature tracking and retrieve atmospheric motion vectors (AMVs)
- Main goal of the study is to investigate the potential impact of these observations of both the <u>wind and</u> <u>radiance</u> information from the constellation

Study is performed on top of GMAO OSSE system

- Full 2016 Observing System
- Simulated from 7 km GEOS-5 Nature Run

MISTiC Winds = <u>Midwave Infrared Sounder for</u> <u>Temperature and humidity in a Constellation for</u> <u>Winds</u>

MISTiC Radiances

MISTiC spectral information is about 1/3 of AIRS, CrIS, IASI

- Simulated MISTiC spectrum shown in green, based on BAE-provided specs
- 590 channels ranging from 1735-2450 cm⁻¹

All cases perform a channel selection, down-selecting to 46 channels

- Necessary as correlated observation error are not considered in the analysis
- Thermal contrast in the water vapor, temperature sounding channels is a proxy for independent information content

MISTiC radiance errors are estimated using convolved IASI radiances

Wind Simulation in an OSSE

Atmospheric Motion Vector (AMV) Retrieval

- An inference of the wind via feature tracking
 - Clouds and water vapor gradients
- Traditionally via satellite imagery
 - advantages in spatial and temporal resolution compared to sounding
 - Largest errors in height assignment

Wind Simulation in an OSSE

Wind Simulation in an OSSE

NR feature tracking is not an option

 We developed a simulator that estimates the location of AMVs without performing feature tracking

Radiance simulation

- Must incorporate both clouds and clear sky information for a realistic distributions of observations
 - No error does not mean cloud-free
- Not described here, but observations and error proxy data developed by Isaac

Observation Simulation - Wind

Wind Simulator

- Observations are derived from NR
- Probability of cloud AMV is determined as a function of NR cloud fraction
 - Considers sub-column based on maximum-random overlap
- Probability of water vapor AMV determined on <u>fixed pressure surfaces</u>
 - Function of RH and RH gradient
- The purpose of this is that an observing system based on AMVs will not have regular sampling
 - Based on distribution of trackable features
 - The strength of data assimilation to produce regularly gridded fields

Experiment Configuration

Control – GMAO OSSE System

- Full Observing System circa 2016
 - Conventional: RAOB, surface, aircraft
 - Satellite Retrieved: GEO AMVs (GOES/ Himawari/MeteoSat), Polar LEO AMVs (MODIS Aqua/Terra)
 - Radiance:
 - IR: AIRS, IASI (Metop-A/B), CrIS, HIRS (Metop-A)
 - Microwave T: AMSU-A (NOAA-15/18/19, Metop-A/B, Aqua), ATMS, SSMIS F17
 - Microwave Q: MHS (NOAA-18, Metop-A/B)
 - All observations have error models applied

Experiment – 4PERF

- Control + 4 Orbit Configuration
 - MISTiC Radiances (46 channel selection)
 - Channel selection performed to reduce interchannel correlations
 - MISTiC AMVs (Cloud & WV)
 - No additional errors applied to either radiances or AMVs

Experiment – 4ERR

 4PERF + error covariance models applied to radiances and winds

Analysis Error Variance Difference – Zonal Average

- Error variance calculated relative to Nature Run truth
- Difference relative to CTL Blue (red) indicates addition of MISTiC obs reduced (increased) error
- Not shown, but 4PERF shows similar pattern, but with more improvement throughout

Analysis Error Variance – Zonal Average

- Error variance calculated relative to Nature Run truth
- Difference relative to CTL Blue (red) indicates addition of MISTiC obs reduced (increased) error

Analysis Error Variance Difference

- Error variance calculated relative to Nature Run truth
- Difference relative to CTL Blue (red) indicates addition of MISTiC obs reduced (increased) error

Forecast Skill – Z Anomaly Correlation P vs. time

Forecast skill improvement apparent in perfect observations, less apparent in error-added experiments

- Positive impact in all cases to day 2.5
- Largest near surface in NH, consistent through column in SH

4ERR shows skill improvement, but lesser magnitude than 4PERF

- Still significant at 5 days through most of troposphere in N. Hem
- Significance loss at 4-5 days in S. Hem
- 4PERF (not shown) maintains significance through all forecast hours

Forecast Sensitivity - Observation Impact (FSOI)

- FSOI is a measure of 24 hour forecast error reduction projected into observation space
- Each assimilated observation has its own impact metric
 - Allows for the aggregation of the metric in different ways
 - per instrument, channel, footprint, etc.
- A negative value equates a reduction in error, so NEGATIVE = GOOD

Forecast Sensitivity - Observation Impact (FSOI)

- FSOI is a measure of 24 hour forecast error reduction projected into observation space
- Each assimilated observation has its own impact metric
 - Allows for the aggregation of the metric in different ways
 - per instrument, channel, footprint, etc.
- A negative value equates a reduction in error, so NEGATIVE = GOOD

Forecast Impact (FSOI Metric)

Considering perfect observations, MISTiC has the potential for reducing 24 hr forecast error

When realistic are applied, the radiance impact is reduced greatly

MISTIC AMV FSOI

Cloud and WV AMVs combined

- Sampling strategy results in consistent distribution through troposphere
- Shows highest impact measurements come from middle troposphere

Forecast Impact (FSOI Metric)

- Perfect observations show a similar impact to an AMSU-A
- Imperfect observations show sub-CrIS impact
 - we know why CrIS is low not a knock on instrument

MISTiC Radiance FSOI

FSOI by channel

Conclusions and Interpretation

The impact of four-orbital planes providing 'global' coverage

- Analysis error reduction showed primarily improvement with more observations in for U, T, and q
 - Small degradations are likely systematic in assimilation methodology (e.g. avoid highest moisture channels)
- Full constellation resulted in significant forecast skill improvement in both hemispheres (not shown)
- Metrics/improvements scale down when considering a single plane versus four

Inclusion of error model provides an indication of real benefit versus 'idealized' benefit

- Results consistently degraded when error model was included
- FSOI-indicated degradation due to shortwave radiances partially due to assimilation shortcomings

Overall, there is an expected benefit to be gained from MISTiC (or similar) constellation

- This OSSE helps quantify this benefit
- Provides some bounds to both 'expected' and 'ideal' impact

Analysis Error Variance Difference – Zonal Average

- Error variance calculated relative to Nature Run truth
- Difference relative to CTL (no MISTiC) Blue (red) indicates addition of MISTiC obs reduced (increased) error

Analysis Error Variance Difference – Zonal Average

- Error variance calculated relative to Nature Run truth
- Difference relative to CTL Blue (red) indicates addition of MISTiC obs reduced (increased) error
- Not shown, but 4PERF shows similar pattern, but with more improvement throughout