Experimental processing of the AIRS hyperspectral measurements to estimate the cloud absorption vertical profiles for Hurricane Ioke on August 28, 2008

Youri Ploshchenko, Paul Menzel, Robert Knuteson, and Henry Revercomb
Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, Madison WI

Abstract
AIRS granules covering Hurricane Ioke on August 28, 2008 were selected and processed. A multi-level cloud model for approximating cloud spectral effects on outgoing spectral radiation in the "surface–atmosphere" system was used in the physical interpretation of AIRS measurement. Cloud spectral effects in the model are represented by an effective cloud absorption vertical profile (CAVP). Spatial distribution of cloud absorption in 3D was obtained. The internal structure of Hurricane Ioke was reconstructed. The CAVP estimates were compared with coincident CALIPSO measurements.

Model

\[
J(v) = \left(1 - \sum_{\nu=1}^{K} \alpha_{\nu}(v) \right) J(v, p_1) + \sum_{\nu=1}^{K} \alpha_{\nu}(v) J(v, p_1) \\
J(v, p_1) = B \left[T(p_1) \right] F'_1(p_1) + \int B \left[T(p) \right] F'_1(p) \, dp
\]

Solution

\[
\hat{\alpha} = \arg \min \left\{ \frac{1}{M} \sum_{m=1}^{M} \left[f_m - \sum_{\nu=1}^{K} \alpha_{\nu}(v) \right] \right\}
\]

Spectral channels

(a) not sensitive to atmospheric moisture, \(r_{p_1}^2(\nu, \Theta) \geq 0.4 \)
(b) having insignificant contribution from the surface, \(r_{p_1}^2(\nu, \Theta) < 0.1 \)
(c) with significant contribution from the cloud atmosphere: Removed channels showing (d) spectral-spatial inconsistencies temporal instability (processing with feedback), and (f) poor performance in the radiative transfer model (processing with feedback).

Conclusions

- Stated inverse problem of estimation of cloud absorption vertical profile is applied to AIRS hyperspectral measurements. The inverse problem generates a physically meaningful solution.
- The derived estimates of CAVP is compared with consistent CALIPSO measurements. Comparison shows that the estimate exhibits high spatial-temporal correlation with the lidar measurements reproducing cloud vertical structures similar to those observed in the lidar measurements.
- The CAVP estimate contains the information about cloud vertical structure. Spatial distribution of cloud absorption in 3D allows to reconstruct and to monitor the hurricane internal structure.
- AIRS instrument provides IR hyperspectral information that is effective for the identification of cloud vertical structure.

This work was supported by NASA grant NNX11AK21G