AIRS Mid-Tropospheric CO$_2$ Climatology Product

Thomas S. Pagano, Ed Olsen, Hai Nguyen, Alex Ruzmaikin
California Institute of Technology, Jet Propulsion Laboratory
4800 Oak Grove Drive, Pasadena, CA, USA 91109

Xun Jiang
University of Houston, Houston Texas

April 21, 2015

tpagano@jpl.nasa.gov, (818) 393-3917, http://airs.jpl.nasa.gov

Agenda

• AIRS Mid-tropospheric CO$_2$ climatology dataset created
• Product uncertainties included
• Product validation underway
 – This talk examines the seasonal cycle
 – Results: NH Dampening and Phase Lag, SH Reversal

• Conclusions
AIRS Retrieves CO$_2$ in the Mid to Upper Troposphere

- **AIRS Sensitivity**
 - Peak sensitivity altitude varies slightly with latitude and season:
 - Tropics: 285 hPa
 - Poles: 425 hPa
 - Width at half-maximum is ~400 hPa, spanning:
 - Tropics: 120 hPa to 515 hPa
 - Poles: 235 hPa to 640 hPa
 - Tails of averaging kernels intrude into stratosphere, where air is older than in troposphere by an amount that varies with latitude (~1 yr in tropics; ~5 yrs at poles).
 - Impact: ~3 ppm increase in retrieved CO$_2$ near the poles if correction is applied.
AIRS Mid-Tropospheric CO₂ Climatologies

- AIRS CO₂ Climatology: Average of AIRS L3 Monthly CO₂ over years 2003-2010

\[D_{\downarrow ijm} = \sum_{k=1}^{18} N_{\downarrow ijm} D_{\downarrow ijm} / \sum_k \]

Simple Monthly Climatology
- V5 L3 Monthly CO₂ for Years: 2003-2010
- QC on -9999
- Detrend CO₂ using linear fit to all years for each grid cell
- Average CO₂ values for individual months (e.g. all January’s. Gives 12 files)
- Preserve Grid of input L3

Standard deviation and number of samples for each month from all years is combined into single value

July Climatology Statistics

a) Uncertainty, σ_{ij7}

b) Number of Data Points included in the mean, N_{ij7}

\[\sigma_{ijm} = \sqrt{\sum_{k=1}^{8} N_{ijklm} [D_{ijklm}]^2} \]

\[N_{ijm} = \sum_{k=1}^{8} N_{ijklm} \]
Zonal average of AIRS CO$_2$ climatologies show many features

- Higher variability in polar regions
- Higher amplitude of seasonal cycle in NH
- Persistent low in SH subtropics (See Xun’s Talk)
Comparison of Seasonal Cycle Datasets

<table>
<thead>
<tr>
<th>Comparison Product</th>
<th>Instrument</th>
<th>Level</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Trop CO2, T${500mb}$, T$_{surf}$</td>
<td>AIRS</td>
<td>L3</td>
<td>GES/DISC</td>
</tr>
<tr>
<td>Surface CO$_2$</td>
<td>In-Situ/Flask</td>
<td>N/A</td>
<td>NOAA ESRL*</td>
</tr>
<tr>
<td>EVI, T$_{surf}$ (for GPP)</td>
<td>MODIS</td>
<td>L3</td>
<td>GES/DISC</td>
</tr>
</tbody>
</table>

Seasonal Cycle Revealed in Zonal Averages

Monthly climatology made for each product by combining L3 from 2003-2010

Zonal averages made of each climatology in 20 degree bins
Mid-tropo CO$_2$
NH: Damped seasonal amplitude compared to surface

SH: Higher seasonal amplitude. Inter-hemispheric transport?
Mid-tropo CO$_2$

NH: Lags the surface due to mixing

SH: Leads the surface due to interzonal transport?
AIRS CO$_2$ Shows Significant Influence of Surface in addition to Atmospheric Transport

High Correlation of CO$_2$ and GPP for July in NH Boreal Forests

40N-50N $
ewline$ C = 0.80
Summary and Future Work

• Summary
 – AIRS mid-tropospheric CO₂ monthly climatology generated
 – Recently reprocessed for 2003-2014
 – Climatology available at co2.jpl.nasa.gov this summer
 – Distinctive seasonal cycle seen in the mid-tropospheric CO₂ from AIRS
 • Amplitude damped in NH relative to surface flask measurements
 • Phase lag relative to surface flask in NH
 • Phase precedes, and amplitude higher than surface in SH
 – Influence of boreal forest drawdown in summer seen in spatial variability
 of AIRS mid-tropospheric CO2

• Future work
 – Climatology with Version 6 to increase yield and accuracy

• Acknowledgements
 – Dr. Mous Chahine (CO2 VPD Algorithm, AIRS Science Team Lead to 2011)
 – Dr. Ramesh Kakar (Aqua Program Scientist)
AIRS CO$_2$ Climatology Animation

Dec 15