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Introductory comments

I We want to estimate a complete geophysical field from massive,
heterogeneous, observational data.

I The result is input to further science investigations and applications, so
uncertainties must be propagated rigorously.

I Uncertainties should also be minimized so that conclusions, and decisions
based on them, are as robust as possible. Need to leverage spatial and
temporal dependencies.

I Challenge: Accomplish this in the face of massive data volumes from
multiple instruments and complex calculations required.
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OCO-2 and AIRS data

PPM

AIRS mid-tropospheric
CO2, October 30 through
November 2, 2014.
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OCO-2 and AIRS data

PPM

AIRS mid-tropospheric
and OCO-2 total column
CO2, October 30 through
November 2, 2014.

OCO-2 footprints actual
size.
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Exploiting synergy

I Instrument sensitivities are similar at and above the mid-troposphere, but
not below: OCO-2 is sensitive down to the surface, but AIRS is not.

I To the extent that CO2 mole-fraction near the surface and in the
mid-troposphere are correlated, we should be able to improve estimates of
both by exploiting this correlation.

I We should also be able to
I exploit the coverage of AIRS and the accuracy of OCO-2
I exploit spatial and temporal correlations within and between data sets.
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Exploiting synergy

1000 hPa

500 hPa

300 hPa

I If we knew the “true" values of total-column and mid-tropospheric
mole-fraction at a location s =lat,lon, Y1(s) and Y2(s), then we could
compute

YLA(s) =
(1000 − 300)Y1(s)− (500 − 300)Y2(s)

1000 − 500
.

I Can we get estimates, with uncertainties, of (total-column, mid-trop) pairs
at reasonable resolution so we can compute this?
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Example

I Accumulate 12 days of AIRS and OCO-2 data into three, four-day blocks:
Oct 30 - Nov 2, Nov 3 - 6, Nov 7 - 10.

I Run Spatio-Temporal Data Fusion algorithm (STDF) on the three blocks,
producing three output data sets, one for each block. (See Nguyen,
Katzfuss, Cressie, and Braverman (2014) for details.)

I STDF accounts for spatial correlations among footprints for both
instruments (including corrections for different sizes and orientations) and
for temporal correlations from time block to time block.

I Timing: 90 minutes to process the three blocks on a single, Intel Xeon 2.0
GHz processor.

I Crucial assumptions: uncertainty on AIRS datum is 1.5 ppm, and
uncertainty on OCO-2 datum is 2 ppm.
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Example

Fused estimate of lower-atmosphere CO2, Oct 30 - Nov 2, 2014:

PPM

Produced using STDF
with analysis resolution
≈ 30 km.

Visualization resolution
≈ 120 km.

How to validate estimates?
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Example

Uncertainties of fused uncertainties, Oct 30 - Nov 2, 2014:

PPM

Lower uncertainties
coincide with OCO-2 tracks.

How to validate
uncertainties?
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Data fusion strategy

I In order to do this calculation, we need to infer the true mole-fractions of
(total-column, mid-trop) pairs on a fine grid of locations.

I We define that grid by partitioning the world into very small hexagonal tiles
called basic areal units (BAU’s) Notionally, each BAU contains a pair.
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Data fusion strategy

I Since this bivariate field is unknown, we model it with a random vector that
behaves according to a probability distribution.

I We use Bayes’ Theorem: before acknowledging the observations, we
assume a “prior" distribution.

I After seeing the data, we update that distribution and call it the “posterior".

I We report the mean vector and covariance matrix of the posterior
distribution as our inference.

I Key innovations: capture spatial dependence with a hidden,
low-dimensional variable; capture temporal dependence from time block to
time block with a Kalman smoother on the hidden variable.
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Example

Caveats:

I OCO-2 data are very preliminary: just a placeholder here to show data
fusion machinery.

I The formula for computing lower-atmosphere mole-fraction is
unrealistically crude.

I Uncertainties on the input data are unrealistic (but the best we’ve got right
now). This is a major issue.

I We have built a simulation system for characterizing the performance of
STDF on synthetic “truth" data, and are in the process of assessing how
various design choices affect our results.
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Validation example

I Validation of STDF estimates of lower-atmosphere CO2 based on AIRS
and Japan’s Greenhouse Gases Observing Satellite (NASA retrievals).
See Nguyen et al. (2014) for details.
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Take home

I Data fusion is necessary to realize benefits of synergy among NASA
missions.

I What is new about this data fusion technology:
I based on uncertainty quantification and minimization
I uses a formal probabilistic framework that is coherent
I exploits spatial and temporal correlations to drive uncertainties down
I corrects for heterogeneous footprints
I feasible for massive data sets and operational implementation.

I Better results are possible if mission provide formal uncertainty estimates
for their retrieivals.
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