Evaluation of AIRS V6 Temperature Profiles and Surface-Based Inversions over Antarctica using Concordiasi Dropsonde Data

Patrick Boylan

Thanks to Junhong Wang, Steve Cohn, Eric Fetzer, Eric Maddy, and Sun Wong

1National Center for Atmospheric Research (NCAR), Earth Observing Laboratory, Boulder, Colorado, USA
2Department of Atmospheric and Environmental Science, University at Albany, SUNY, Albany, NY, USA
3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
4Science and Technology Corporation at NOAA/NESDIS/STAR, College Park, MD, USA
Motivation & Research Questions

• How well do available satellite products capture the temperature profile over Antarctica?

• Can these satellite products be used to detect surface-based temperature inversions (SBI)?

• If so, can we identify annual trends in SBIs over Antarctica?
Observations in Antarctica are hard to come by...
The Process

- AIRS 100 level L2 support product
- Surface air temperature necessary for SBI detection
- Used QC flag of Best and Good
- Dropsonde – vertical scale of meters
- Two methods for comparison
 - Full-resolution sonde data
 - AIRS kernel averaging applied to sonde
- 6 hr, 150 km co-location threshold
- 1486 available profiles
Temperature Comparison - AIRS vs Sonde

Potential Confounding Factors:
- Surface type
- Cloud cover
- Surface elevation
- Matching distance/time
- Lat/Lon

![Graph showing temperature comparison between AIRS and Sonde with potential confounding factors.](image)
Temperature Comparison – 500 hPa
Sea Ice - 20%

Snow - 77%
Temperature Comparison by Elevation over Snow
Temperature Evaluation Highlights

- Over Antarctica, AIRS Version 6 reduces the bias and RMSE compared to version 5.

- Version 6 bias dependent on surface type and surface elevation.

- Matching distance / time is not a factor - not true globally.

- Can AIRS profiles be used to detect surface-based temperature inversions?
 - What about the surface air temperature?
Surface-Based Inversions

3 Characteristics:
Frequency - Occurrence
Depth (m)
Intensity (°C)
Surface-Based Inversions

Agreement: 79%

<table>
<thead>
<tr>
<th>Kerned Sonde</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRS</td>
<td>57%</td>
<td>10%</td>
<td>999</td>
</tr>
<tr>
<td>No</td>
<td>11%</td>
<td>22%</td>
<td>487</td>
</tr>
<tr>
<td>Total</td>
<td>1007</td>
<td>479</td>
<td>1486</td>
</tr>
</tbody>
</table>

Discrete layers for SBI depth:
Agree: 79%
+/- 1 level: 97%

Sonde intensities larger ...
Differences between depth and intensity
Inversion Temperatures

Surface

A) AIRS vs Kerned Sonde Surface Temperature (°C)

Top

B) AIRS v6 Top of Inversion Temperature (°C) vs Kerned Sonde Top of Inversion Temperature (°C)
AIRS SBI detection

- AIRS is doing the best it can to detect SBIs, given its limited vertical resolution.
- Both SBI occurrence and depth show high agreement ~80%.
- AIRS underestimates SBI intensity by ~40%.
- Low SBI detection agreement over the ocean.

Full-Sonde
- 59% occurrence agreement
- 70% w/ surface air temp change
Future Work

- Accurate surface air temperature is critical for SBI detection.
- ERA-Interim and new version of IASI are being utilized.
- Use of AIRS based SBIs for future research depends on objective/accuracy required.