AIRS Version-5 Products Verify and Explain Recent Negative Global OLR Trend Observed by CERES

Joel Susskind, Gyula Molnar¹, Lena Iredell²
NASA GSFC Laboratory for Atmospheres

AIRS Science Team Meeting
April 21-23, 2010
Pasadena, California

1. UMBC GEST
2. SAIC
The CERES Science Team OLR products shows a negative global trend on the order of $-0.1 \text{ W/m}^2/\text{yr}$ from September 2002 through December 2008.

In a major address at the recent AGU, Kevin Trenberth (NCAR) said CERES must be wrong. He said “this can’t be the case.”

At a poster at AGU I showed Kevin that AIRS and CERES OLR trends match perfectly. I said “this is the case, but I can’t tell you what is causing it.”

Our subsequent research explains the meteorological cause of this negative global OLR trend.
Comparison Data Sets

AIRS Version-5 monthly mean OLR data obtained from Goddard DISC (Level 3)
Presented on a 1°x1° latitude-longitude grid
1:30 AM and 1:30 PM monthly mean values extracted separately and averaged together
We use data through December 2009

CERES monthly mean obtained from Langley ASDC
All data presented on a 2.5°x2.5° ERBE-like latitude-longitude grid (ES-4)
Edition-1 and Edition-2 CERES CV Terra OLR were both used
Edition-1 extends to December 2009
Edition-2 is more accurate, but extends only to December 2008

CERES Aqua OLR had calibration problems in the early part of the mission and was not used from comparison of anomalies and trends
Significance of AIRS OLR and Clear Sky OLR

AIRS OLR is a computed product for each AIRS FOR using an OLR RTA

Input data is AIRS retrieved T_{skin}, ε, $T(p)$, $q(p)$, O_3, $\alpha\varepsilon$, and p_{cloud}

AIRS Clear Sky OKR is also computed for each AIRS FOR using same parameters but setting $\alpha = 0$

CERES is a measured product

If anomalies and trends of AIRS OLR closely match those of CERES, then:

This validates anomalies and trends of both AIRS OLR and CERES OLR

This indirectly validates anomalies and trends of AIRS retrieved products

In addition, anomalies and trends of OLR can now be attributed to those of its component parts

Susskind, Molnar, and Iredell
Definition of Anomalies and Trends

For comparison purposes 6-year climatologies were used

 6-year monthly climatologies were generated for each grid box by averaging data for 6 Januaries, 6 Februaries, ……

The monthly average for each grid box is the difference of the value for that month from its climatology

The trend for a grid box is the slope of the straight line passing through the 76 monthly anomalies (September 2002 through December 2008)

The area mean trend is the cosine latitude weighted average trend over the area

Monthly anomalies and trends of AIRS and CERES OLR can match well if there is a bias between AIRS and CERES OLR but it is essentially constant in time.
Comparison of OLR Observations

September 2002 through December 2009 Time Series of Global All-Sky OLR Differences

- Sep 2002 to Dec 2009 AIRS Version-5
- Mar 2000 to Dec 2009 Edition-1 Terra CERES
- Oct 2001 to Dec 2008 Edition-2 Terra CERES

AIRS Version-5 minus Terra CERES Edition1
AIRS Version-5 minus Terra CERES Edition2
Findings from Time Series of Global OLR

AIRS OLR and CERES Terra Edition-1 and CERES Terra Edition-2 OLR are all biased with respect to each other with small seasonal cycles.

These biases are essentially constant over the 6 to 7-year time period studied.

This implies global mean trends of AIRS and CERES Terra OLR might agree well.

To first order, the large bias and its small seasonal cycle will be removed in the anomaly time series.

AIRS Version 6 OLR uses a new OLR RTA that essentially removes the 9.6 W/m2 bias between AIRS and CERES Terra Edition-2 OLR.

The new RTA was developed by AER.

The improvement is mainly in the characterization of H$_2$O rotation band near 300 cm$^{-1}$.

AIRS version 6 OLR is roughly 9 W/m2 lower than AIRS version 5 OLR.
Comparison of OLR Anomaly Timeseries

Data for September 2002 through December 2009
Trends cover September 2002 through December 2008

Global

- September 2002 – December 2009
 AIRS Version-5 Trend = \(-0.111\) W/m\(^2\)/yr
 Edition-2 Terra CERES Trend = \(-0.090\)
- September 2002 – December 2009
 Edition-1 Terra CERES Trend = \(-0.108\)

Tropics

- September 2002 – December 2009
 AIRS Version-5 Trend = \(-0.265\) W/m\(^2\)/yr
 Edition-2 Terra CERES Trend = \(-0.255\)
- September 2002 – December 2009
 Edition-1 Terra CERES Trend = \(-0.273\)

Susskind, Molnar, and Iredell
Comparison of OLR Zonal Mean Trends

September 2002 through December 2008

Trend

Susskind, Molnar, and Iredell
Comparison of OLR Spatial Trends

OLR Anomaly Trend
September 2002 through December 2008

Susskind, Molnar, and Iredell
Comparison of OLR Anomaly Hovmoller Diagram

Monthly Mean OLR Anomaly (W/m²) Tropics 5ºN to 5ºS

a) AIRS

b) CERES Edition-2

c) AIRS minus CERES Edition-2
 Correlation = 0.992

d) AIRS minus CERES Edition-1
 Correlation 0.994
A strong equatorial SST cooling trend exists from 160E to 120W surrounded by a weaker warming ring to the west. A transition occurred from a strong El Niño in late 2002 to a strong La Niña in 2008. Late 2009 is characterized by the beginning of another El Niño.

September 2002 to December 2009
Effects of El Niño on Water Vapor, Cloud, and OLR Trends

September 2002 through December 2009

500 mb Specific Humidity (%/yr)

Cloud Fraction (%/yr)

OLR (W/m²/yr)

Clear Sky OLR (W/m²/yr)
Effects of El Niño on Water Vapor, Cloud, and OLR Trends

September 2002 through December 2009
5N to 15S, 150W to 30E Boxed in

500 mb Specific Humidity (%/yr)
Cloud Fraction (%/yr)

OLR (W/m²/yr)
Clear Sky OLR (W/m²/yr)
Effects of El Niño on Water Vapor, Cloud, and OLR Anomalies

AIRS Monthly Anomalies September 2002 through December 2009 Tropics 5N to 5S

Cloud Fraction

500 mb Specific Humidity

OLR

Clear Sky OLR

Susskind, Molnar, and Iredell
Attribution of Negative Area Mean OLR Trends

Trends in 500mb specific humidity and cloud cover are in phase with those of SST in the El Niño and surrounding region causing OLR to decrease significantly near the dateline and increase in the vicinity of Indonesia. Tropical OLR trends in these two areas cancel each other.

The negative zonal mean tropical OLR trend results from a drop in equatorial OLR from 150W eastward to 30E. This results from increasing water vapor and cloud cover in this area during La Niña. Roughly 2/3 of the decrease in tropical OLR results from a decrease in cloud cover and 1/3 from a decrease in water vapor.
Removing the area 5N to 15S, 150W to 30E from area weighted statistics eliminates the tropical negative OLR trend. Red line on chart.
Removing the area 5N to 15S, 150W to 30E from area weighted statistics eliminates the global negative OLR trend.

Red line on chart.

Global
Trend = -0.116 W/m²/yr

Global except for bounding box
Trend = -0.007 W/m²/yr

AIRS Version-5 Global All-Sky OLR Anomaly Timeseries
September 2002 through December 2009
September 2002 through March 2010

Global All-Sky OLR Anomaly Timeseries

AIRS Version-5 Trend = -0.098 W/m²/yr
Terra CERES Edition-1 Trend = -0.092 W/m²/yr

Tropical All-Sky OLR Anomaly Timeseries

AIRS Version-5 Trend = -0.166 W/m²/yr
Terra CERES Edition-1 Trend = -0.165 W/m²/yr