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Motivation & Goal

Study Earth from space to improve our scientific understanding of global climate change; 
derive seasonal-global IR spectral emissivity with operational satellite hyperspectral IR 
measurements.

• This will help to understand the nature of radiative transfer process for the Earth and atmospheric 
environment, and the radiation budget for the Earth system.

• Accurate surface emissivity retrieved from satellite measurements are greatly beneficial but not limit to
1) improving retrieval accuracy for other thermodynamic parameters (e.g., Ts, CO, O3, H2O…),
2) helping surface skin temperature retrieval from other satellite broad-band measurements,
3) assisting assimilation of hyperspectral IR radiances in NWP models, and
4) climate simulation.

• Retrieval algorithm evaluation/validation through retrieval products. 

• Long-term and large-scale observations, needed for global change monitoring and other research, can only 
be supplied by satellite remote sensing.

• Surface emissivity and skin temperature from the current and future operational satellites can and will 
reveal critical information on the Earth’s land surface type properties and Earth’s ecosystem. 



Part A: Regression Retrieval (Zhou et al., GRL 2005)
Using an all-seasonal-globally representative training database to diagnose 0-2 cloud layers from training 
relative humidity profile:

A single cloud layer is inserted into the input training profile. Approximate lower level cloud using 
opaque cloud representation.

Use parameterization of balloon and aircraft cloud microphysical data base to specify cloud effective particle 
diameter and cloud optical depth:

Different cloud microphysical properties are simulated for same training profile using random number 
generator to specify visible cloud optical depth within a reasonable range. Different habitats can be 
specified (Hexagonal columns assumed here).

Use LBLRTM/DISORT “lookup table” to specify cloud radiative properties:
Spectral transmittance and reflectance for ice and liquid clouds interpolated from multi-dimensional 
look-up table based on DISORT multiple scattering calculations.

Compute EOFs and Regressions from clear, cloudy, and mixed radiance data base:
Regress cloud, surface properties & atmospheric profile parameters against radiance EOFs.

Part B: 1-D Var. Physical Retrieval (Zhou et al., JAS 2007)
A one-dimensional (1-d) variational solution with the regularization algorithm (i.e., the minimum 
information method) is chosen for physical retrieval methodology which uses the regression solution as the 
initial guess.
Cloud optical/microphysical parameters, namely effective particle diameter and visible optical thickness, are 
further refined with the radiances observed within the 10.4 to 12.5 µm window. 

IR-only Cloudy Retrieval Algorithm



Emissivity EOF Regression (Zhou et al., AO 2002)
A surface emissivity function is used instead of emissivity in the retrieval in order to constrain retrieved 
emissivity spectrum (εν) within a boundary between εmin and εmax;

F(ε) = log[log(εmin)-log(εmax-ε)], (1)  New approach
AF = F Φ, (2)

where AF is a set of EOF amplitudes of F(ε) and Φ is the eigenvector matrix generated with a set of lab 
measured emissivity spectra in the form of the emissivity function F(ε).
A set of 10 F(ε) EOF amplitudes is used together with other retrieved parameters (e.g., Ts, T, q) as a state 
vector to be retrieved against a set of radiance EOF amplitudes representing measured radiance spectrum. 

Emissivity Physical Retrieval (Li et al., GRL 2008)
Physical iteration retrieval, using the regression solution as the initial guess, with the regularization 
methodology can be performed with a penalty function, 

J(x) = [Ym-Yc(x)]T E-1 [Ym-Yc(x)] + (x – x0)T ϒI (x – x0), (3)
and the Newtonian iteration, where x, Y, E, and ϒ are a state vector, radiance, measured error covariance 
matrix, and Lagrangian multiplier, respectively; m, c, and T represent measured, calculated, and transpose, 
respectively.
Emissivity Jacobian matrix (i.e., weighting functions) of the radiance with respect to the channel emissivity 
(Wchan) is compressed to the Jacobian matrix of the radiance with respect to the emissivity function 
eigenvector amplitudes (WF) using the eigenvector matrix Φ.

WF = Wchan Φ (4)

Retrieval Algorithm Involved with εν



Emissivity (εν) is linear to Radiance (Iν)
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Iν =  observed spectral radiance
εν =  spectral emissivity
Bν =  spectral Planck function
Ts =  surface skin temperature
τ ν (z1,  z2) =  spectral transmittance from altitude z1 to z2 

z s =  sensor altitude 
    

 

T(z) =  temperature at altitude z
ρν =  spectral surface reflectivity

ρν
solar =  spectral solar reflectivity

H = solar irradiance
θ = solar zenith angle

τ ν
b =  two - path transmittance from 

         the Sun to the surface then to the satellite



Reg. Emis. Ret. Accuracy Estimation

(a) Emissivity training variability

(b) Emissivity retrieval accuracy

Note: since the emissivity is linear to channel radiances, we chose to use retrieved emissivity from linear 
EOF regression, not further retrieved in physical iteration. However, if the physical retrieval is 
performed for other parameters, emissivity will be further refined through physical iteration. 

• The emissivity assigned to each training 
profile is randomly selected from a 
laboratory measured emissivity database, 
indicated in panel a, and has a wide variety 
of surface types suitable for different 
geographical locations.  The vertical bars 
show the emissivity STD for this dataset.  

• Estimated surface emissivity retrieval 
accuracy, the mean difference (or bias) in 
curve and the STDE in vertical bars shown 
in panel b, is training data dependent. 

• Surface skin temperature is one of the most 
“coupled” parameters with emissivity, it is 
necessary to mention that skin temperature 
retrieval accuracy has a -0.07 K bias with a 
0.84 K STDE from the same analysis



Emis. Ret. and Rad. Fitting Samples

Samples shown are for both day and night observations over the Sahara Desert.  Simulated spectral radiances 
from the retrieved parameters (i.e., atmospheric profiles, surface skin temperature and emissivity) are plotted 

(in top panels) in red curves in comparison with the measurements in blue curves.  Retrieved surface 
emissivity spectra are plotted in the bottom panels with IASI day and night observations, respectively. 

Over Sahara (Lat.=26.43°N; Lon.=18.45°E); 
Daytime (SZA=36.72°), 2007.08.01     

Over Sahara (Lat.=23.23°N; Lon.=18.37°E); 
Nighttime (SZA=116.1°), 2007.08.01



“ACP Commercial…”



APC paper: AIRS vs. IASI (4/29/2007)
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subtle while the 
atmospheric variation 
from location to 
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ACP paper: RH Field Evolution (4/29/2007)  

RH evolution characteristic between AIRS 
and IASI measurements observed by (a) 
AIRS at 19:30UTC and IASI at 15:48 
UTC, and (b) by NAST-I at 19:11 UTC 
and 15:40 UTC. 

Can we improve these retrievals?     YES WE CAN



Improved Retrievals?

BRT Fitting Residual (K)

BRT Fitting Residual (K)

Emissivity retrieved with ε EOF amplitudes (in ACP paper)

Emissivity retrieved with F(ε) EOF amplitudes (new approach) and other minor changes

ε = 0.995, if ε > 0.995



Cloud Detection with Regression

where φ = 0, 1, and 2 are for clear sky, ice cloud, and water clouds, respectively; and Hc is cloud top height 
relative to surface, φ is cloud phase, and τcld is cloud visible optical depth.

Regression with 
“mixed” coefficients

Hc ≤ 2.5 km, and
φ ≤ 0.5, and 
τcld ≤ 0.005 

Regression with 
“clear” coefficients

Regression with 
“cloud” coefficients

τcld ≤ 0.1, or
[Hc ≤ 2.0 km and τcld ≤ 0.2], or 

[Hc ≤ 2.5 km and τcld ≤ 0.3]. 

No

Yes

Yes

No Cloud detected

Cloud undetected

Multi-stage regression retrievals are performed.  The first-stage involves mixed (i.e., clear and cloudy) 
regression.  The second-stage (e.g., either clear or cloudy) depends on the cloud detection criteria that are 
based on first-stage retrieved cloud parameters.



Since the cloud parameters, atmospheric and surface parameters are simultaneously retrieved.  
Cloud parameters are used for cloud filter.

Due to cloud coverage, not every measurement can provide surface parameters; however, the surface 
parameters can be retrieved under optically thin clouds with a relatively poor accuracy in comparison with 
that retrieved under clear-sky conditions.  

The surface emissivity composition can be assembled over a period of time and area.  A set of retrievals 
is used to generate a mean surface emissivity.  Single retrievals within a spatial grid (area) meeting the 
following criteria will be taken to generate a convoluted emissivity.  These criteria are 

1. τcld ≤ 0.5,
2. |Ts-Tsm| < σt , 
3. |AF1-AF1m| < σF1 , and 
4. N > 6, 

where Tsm, σt, AF1, AF1m, σF1, and N are Ts mean, Ts STD, first EOF amplitude of F(ε), AF1 mean, AF1 STD, 
and the number of SFOV measurements satisfying criteria 1-3, respectively.

Quality Filter for Global Assembled Mean 



Monthly Mean LST and LE1250 (0.5-deg scale)
2007.07: LST (K)

2008.01: LST (K) 2008.01: LE (1250 cm-1)

2008.07: LE (1250 cm-1)



June 2008 Monthly Mean LE(ν) 



LE Temporal Variation: July-August  

Emissivity at 950 cm-1 (~10.5 μm)

The changes of surface emissivity are noticed.  These changes, through a 2-month period, are mainly due to 
seasonal variation and weather conditions (e.g., temperature and rainfall).

(a) July 1-10, 07 (f) Aug. 21-31, 07 (b) July 11-20, 07 (c) July 21-31, 07 (d) Aug 1-10, 07 (e) Aug. 11-20, 07

Great Basin

Mojave

Chihuahuan

Atacama 

Patagonian 



(a) July 2007 (b) January 2008 (c) January 2008 – July 2007

Semi-annual variation is shown to demonstrate the emissivity contrast between summer and winter.  This 
shows the monthly-convoluted emissivities from July 2007, January 2008, and their differences at a selected 
frequency.  Relatively speaking, the smaller or larger effective emissivity denotes more or less barren land 

during the winter or summer.  

A higher or lower emissivity over the Great Basin or the Great Plains is expected because of the snow/ice or 
barren land during the winter season. 

LE Temporal Variation: Semi-annual  

Emissivity at 950 cm-1 (~10.5 μm)



• A state-of-the-art retrieval algorithm, dealing with all-weather conditions, has been developed and 
applied to IASI radiance measurements.  Surface emissivity is rapidly retrieved using multi-stage 
linear EOF regressions.  

• This retrieval process is so fast that it can provide near-real-time result that is desired by the 
numerical weather prediction (NWP) model analysis using IR hyperspectral simulations. 

• The seasonal variation of global land surface emissivity derived from satellite IR ultraspectral data is 
evident.  Results from IASI retrievals indicate that surface emissivity is retrieved with satellite IR 
ultraspectral data to capture different land surface type properties that contain useful information on 
the terrestrial ecosystem health and reflect on the biosphere’s response to proximal climatic factors (such 
as temperature and rainfall) and human activities.  

• Operational satellite data can provide information for monitoring the Earth’s environment and 
global change as well as the study of ecosystem health that plays an important role in understanding the 
impact of climate change and human activity on altered degradation, biodiversity, and ecosystem 
sustainability.  

• Focus on emissivity validation for providing more-definitive accuracy of the emissivity products.  
Algorithm improvements, along with its product validation, will be made and applied to current and 
future satellite instruments to provide data for long-term monitoring of the Earth’s environment and 
global change.

• Produce AIRS emissivity (from the beginning) to current and future operational IASI and CrIS for 
monitoring global change.

• Use IASI data to produce CrIS proxy data for emissivity retrieval analysis.

Summary and Future Work  
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