CrIMSS EDR
at Sounder PEATE

Sounder Science Team Meeting
May 2009

Sung-Yung Lee
California Institute of Technology
Jet Propulsion Laboratory
AER delivered Science S/W version 2.1.x (x>3) in Dec 2008
 * Sounder PEATE acquired version 2.1.3 (Oct 2008?), but with many missing files

Mini-IDPS at GSFC implemented Ops S/W version 1.5.0.37 in February 2009
 * CDFCB compliant SDR/EDR/IP files

IDPS CrIMSS EDR S/W Porting activities
 * U Wisc for IPOPP for DRO community
 * Souder PEATE at JPL
 * LaRC (Xu Liu and Susan Kizer)

Status of NGAS test data
 * Synthetic data is used by the science software
 * Proxy Data used by Ops software is not suitable for science evaluation
Roughly parallel to AIRS algorithm
 - MW only algorithm with global covariance
 - MW only algorithm with “stratified” covariance
 - IR+MW algorithm with cloud clearing

AER’s OSS instead of UMBC’s SARTA
 - No non-LTE correction shortwave channels
 - No separation of thermal and solar reflectance
 - These two make shortwave channels unusable during daytime
 - Variable CO2, HNO3, SO2 in latest science software, not in ops software yet
IDPS CrIMSS EDR Porting Activity

- IDPS S/W was developed for a specific H/W for performance
- Necessary to port to generic Unix environment
- Three groups were porting the IDPS CrIMSS EDR s/w independently
 - Sounder PEATE
 - U Wisc for IPOPP (Direct ReadOut community)
 - LaRC for IPO
- Each has a running version, MW only retrievals are close, but IR+MW retrievals are off
- Lately we started to work together
- Some of the porting difficulties are land fraction, surface elevations that have been performed in AIRS level 1a processing.
CrIMSS EDR and IP files

- Format described in CDFCB volumes 1 – 8
- 32 second granules (4 scan lines of CrIS) in HDF5
- The latest sample files (version 1.5.0.37) are CDFCB compliant, and are being released from mini-IDPS

EDR
- Vertical temperature profile
- Vertical water vapor profile
- Pressure profile

IP (Intermediate Products)
- Temperature and water vapor at OSS levels
- IR and MW spectral emissivity
- Ozone profiles
- Cloud Cleared Radiances

- Cloud liquid water retrieved, but not written
- No error estimates or averaging kernels are written
Status of IDPS software on Proxy Data

- Main purpose of proxy data is to measure the throughput
- **Cannot judge the quality of EDR algorithm**
- Only 8% of all MW retrievals pass Chi Square Test
- No (or only a few) IR+MW retrieval passes Chi Square Test
- A Few look-up-tables are inconsistent with proxy data
- Many of lessons learned from AIRS are not passed on
- Need better and more realistic simulation system
- Many attempts by AIRS science team to remove tuning were unsuccessful
- Use of shortwave window channels helps skin temperature
- Day/Night boundary is not solar zenith angle of 85 degree
MW Skin Temperature Map

- Ascending granules over southeast Asia
- JPL run (left) vs mini-IDPS sample data (right)
- Pattern match well
- High scan angle FORs are mostly rejected
- Large discontinuity along coastline
Synthetic vs Proxy Data

- **Science S/W is tested on synthetic data**
 - Four days, Oct 1 2000, Jan/April/July 1 2001
 - Sampled at three different angles on either side of nadir
 - No mixed land/water cases
 - Very good retrieval statistics

- **NGAS Proxy data generated from AIRS/AMSU/HSB**
 - Main purpose is to measure the throughput of the S/W
 - Spatial interpolation due to difference in scan pattern
 - OSS was used for AIRS to CrIS and MIT forward algorithm is used for AMSU/HSB to ATMS
 - Rotation of CrIS FOVs is simulated
 - Handling of difference in polarization is unknown
 - Do not use this proxy data outside AIRS swath (two extreme FORs)
Comparison of Proxy Data

- ATMS Channel 3
 - GSFC/LaRC Proxy (top figure)
 - NGAS Proxy (bottom figure)
- Both generated from Aqua
- GSFC/LaRC did not simulate higher orbit of NPP
- Couple of NGAS FORs from either end should be ignored
- Bias may be coming from different polarization
• **Documents**
 • Documents available to me are inadequate

• **Latest Science Software**
 • Version 2.1.3 delivered to us have many missing files.

• **Synthetic Data Need**
 • Unsampled synthetic data
 • Synthetic data for 2000 – 2001 distributed with science software is sampled at 3 different angles on either side of nadir without coastline.
 • NCEP forecasts that go with synthetic data
 • Truth files

• **Proxy Data Need**
 • Consistent synthetic data
 • Enough volume of data to generate tuning coefficients.
 • one or two orbits are available.
Spare Slides
Comparison of CrIS forward algorithms

- AER’s OSS vs UMBC SARTA (day time granule, both with Hamming Apod)
- OSS has known issues with reflected solar radiance and nonLTE
- SARTA has issues with end channels of each of the three bands
Comparison of ATMS forward algorithms

- MIT RTA from P. Rosenkranz
- OSS RTA for ATMS (extracted from science software)
- Atmospheric O2 channels match very well
- Small difference in H2O channels
- Surface channels have large differences, even with same emissivities

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Frequency</th>
<th>Bias</th>
<th>RMS</th>
<th>St Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.800</td>
<td>8.12</td>
<td>9.21</td>
<td>4.42</td>
</tr>
<tr>
<td>2</td>
<td>31.400</td>
<td>4.47</td>
<td>6.55</td>
<td>4.87</td>
</tr>
<tr>
<td>3</td>
<td>50.300</td>
<td>6.20</td>
<td>8.12</td>
<td>5.33</td>
</tr>
<tr>
<td>4</td>
<td>51.760</td>
<td>4.69</td>
<td>6.22</td>
<td>4.16</td>
</tr>
<tr>
<td>5</td>
<td>52.800</td>
<td>1.19</td>
<td>2.38</td>
<td>2.10</td>
</tr>
<tr>
<td>6</td>
<td>53.596</td>
<td>-1.79</td>
<td>1.85</td>
<td>0.49</td>
</tr>
<tr>
<td>7</td>
<td>54.400</td>
<td>-2.50</td>
<td>2.50</td>
<td>0.10</td>
</tr>
<tr>
<td>8</td>
<td>54.940</td>
<td>-2.21</td>
<td>2.21</td>
<td>0.13</td>
</tr>
<tr>
<td>9</td>
<td>55.500</td>
<td>-1.82</td>
<td>1.83</td>
<td>0.21</td>
</tr>
<tr>
<td>10</td>
<td>57.290</td>
<td>-0.31</td>
<td>0.36</td>
<td>0.17</td>
</tr>
<tr>
<td>11</td>
<td>57.290</td>
<td>0.05</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>12</td>
<td>57.290</td>
<td>0.26</td>
<td>0.28</td>
<td>0.11</td>
</tr>
<tr>
<td>13</td>
<td>57.290</td>
<td>0.19</td>
<td>0.23</td>
<td>0.14</td>
</tr>
<tr>
<td>14</td>
<td>57.290</td>
<td>-0.31</td>
<td>0.33</td>
<td>0.13</td>
</tr>
<tr>
<td>15</td>
<td>57.290</td>
<td>0.10</td>
<td>0.28</td>
<td>0.27</td>
</tr>
<tr>
<td>16</td>
<td>88.200</td>
<td>2.19</td>
<td>6.93</td>
<td>6.69</td>
</tr>
<tr>
<td>17</td>
<td>165.500</td>
<td>0.31</td>
<td>1.12</td>
<td>1.10</td>
</tr>
<tr>
<td>18</td>
<td>183.310</td>
<td>-0.62</td>
<td>0.69</td>
<td>0.29</td>
</tr>
<tr>
<td>19</td>
<td>183.310</td>
<td>-0.65</td>
<td>0.69</td>
<td>0.23</td>
</tr>
<tr>
<td>20</td>
<td>183.310</td>
<td>-0.84</td>
<td>0.86</td>
<td>0.17</td>
</tr>
<tr>
<td>21</td>
<td>183.310</td>
<td>-1.00</td>
<td>1.01</td>
<td>0.16</td>
</tr>
<tr>
<td>22</td>
<td>183.310</td>
<td>-1.43</td>
<td>1.44</td>
<td>0.18</td>
</tr>
</tbody>
</table>