Comparison of tropospheric humidity from AIRS, MLS, and theoretical Models

Ju-Mee Ryoo, Darryn Waugh, Takeru Igusa
Johns Hopkins University
Introduction

• Climate is sensitive to upper tropospheric humidity, and it is important to know
 ➢ distributions of water vapor in this region, and
 ➢ processes that determine these distributions.

• We examine the probability distribution functions (PDFs) of upper tropospheric relative humidity (RH) for measurements from
 ➢ Aqua AIRS
 ➢ Aura MLS
 ➢ UARS MLS

• Consider spatial variations of PDFs. Focus here on DJF, ~250hPa

• Also compare with theoretical models (generalization of Sherwood et al (2006) model).
Subtropics is drier than the Tropics
But also significant zonal variations
Large variation in PDFs - peak, spread, skewness, ...

200-250hPa

PDFs: AIRS

Subtropics (15-25N)

Tropics (5S-5N)
Theoretical Models

Basic Assumption:
- Moistening by random events
- Uniform Subsidence (water is conserved)

$\cdot t$: age (time) of parcel since last saturation
Theoretical Model: Generalized Version

As in the Sherwood et al. (2006) model, given uniform subsidence, RH can be approximated as

\[R(t) \approx \exp \left(-\frac{t}{\tau_{\text{Dry}}} \right) \]

Time since last saturation is now modeled as random moistening events but includes randomness of these events (\(k \)).

\[P(t) = \left(\frac{1}{\tau_{\text{Moist}}} \right)^k \exp \left(-\frac{t}{\tau_{\text{Moist}}} \right) t^{k-1} \frac{1}{\Gamma(k)} \]

Eliminate \(t \) from above equations, yields the generalized PDFs of RH as

\[P(R) = \frac{k^k r^k R^{kr-1}}{\Gamma(k)} (-\log R)^{k-1} \]

When \(k=1 \) it is the same as Sherwood et al. (2006)

\[P(R) = r R^{r-1} \]

where, \(\Gamma(k) \) : Gamma function

\(r \): ratio of drying time (\(\tau_{\text{Dry}} \)) to moistening time (\(\tau_{\text{Moist}} \))

\(k \): measure of randomness of remoistening events
How well do the theoretical models fit the observed PDFs?

Generalized Model can fit the observed PDFs (peak, spread, skewness), with \(r \) and \(k \) varying with location.
Maps of “r” and “mean RH”

Strong resemblance between maps of r and mean RH (μ_R)

AIRS (2002-2007)
Maps of “r” and “k”

Convective Regions:
- large r ($r>1$) and small k

=> Rapid, random remoistening
Non-convective Regions:
- small r ($r < 1$) and large k

 => Slower, more regular remoistening (horizontal transport)
PDFS: AIRS - Aura MLS Comparison

Subtropics (15-25N)

Tropics (5S-5N)

Good agreement between AIRS and Aura MLS, with some exceptions.
Spatial Variations in \(r \)

\[r = \frac{\tau_{\text{dry}}}{\tau_{\text{moist}}} \]

- Good agreement between different data sets.

- All show
 \(r > 1 \) in tropical convective regions,
 \(r < 1 \) in dry regions.

- Expected as larger \(r \) implies more rapid remoistening

__AIRS (2002-07)__

__AIRS (2005-07) (match with MLS)__

__UARS MLS (1992-94)__

__Aura MLS (2005-07)__
There are some differences between AIRS and MLS PDFs.

Differences are not simply a function of RH.

Is there a simple parameterization of the AIRS-MLS difference?
Bias between data: $R_{\text{MLS}}/R_{\text{AIRS}}$

NOAA spatially and temporally interpolated OLR (2005-2006)

PDFs of MLS data

PDFs of MLS data after transform
AIRS - Aura MLS bias

Transform MLS Data

\[\frac{R_{MLS}}{R_{AIRS}} = f(R_{MLS}, OLR) \]
Conclusions

• Several robust features (peak, range, skewness) are found in the observed PDFs from all three data-sets (Aura and UARS MLS, AIRS).

• All can be well fit by a generalized version of the Sherwood et al. (2006) theoretical model.

• Consistent spatial variations in “r” (ratio of drying and moistening times) and “k” (randomness of moistening process).

 • Large r, small k in tropical convective regions
 → rapid, random remoistening
 • Small r, large k in dry regions
 → slow, more regular remoistening

• A more quantitative link between the different physical processes and the parameters r and k is needed. This would be performed by trajectory-based water vapor simulations.

Sherwood et al. (2006) assumed that if parcels uniformly subside, RH can be approximated as

\[
R(t) \approx \exp\left(-\frac{t}{\tau_{Dry}}\right)
\]

Time since last saturation is modeled as time between random moistening events

\[
P(t) = \exp(-t/\tau_{moist})/\tau_{moist}
\]

Eliminate \(t\) from above equations, yields the PDFs of RH as

\[
P(R) = r R^{r-1}
\]

where,

\[
r = \frac{\tau_{dry}}{\tau_{moist}}
\]

\(\tau_{dry}\) is the uniform drying time by subsidence

\(\tau_{moist}\) is the time between remoistening events.
Characteristics of the Gamma PDF

$k = 1$ \hspace{1cm} \text{Gamma PDF = Exponential PDF}

$k > 1$

\[
k \propto \left(\frac{\text{mean}(\text{RH})}{\text{standard deviation}(\text{RH})} \right)^2
\]

$k = 3$

$k = 10$

k_i : randomness parameter

Large k_i => less random moistening events
Variations in r and k characterize variations in the moistening processes.

The maps of μ_R and σ_R show a strong resemblance to those of r and k, respectively, i.e., there is large μ_R where r is large and large σ_R where k is small.

$r \sim \mu_R$
$k \sim 1/(\sigma_R)^2$