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Overview

Frequency calibration

Short-wave high-resolution mode results

Radiometric validation

Main Results

Frequency calibration working very well

SDRs exhibit boxcar ringing inconsistencies: up to 1K

Hamming apodization reduces these problems significantly

Comparisons to AIRS, IASI within 0.2K or less

Evidence for a ∼0.2K systematic calibration error in far long-wave

High resolution works very well! Could provide continuation for
NASA carbon monoxide record



3

Intro Validation High-Res Mode CO High-Res ν Cal Intercal

ν Calibration Overview

CrIS In-orbit Neon Cal unchanged from TVAC!

Examine time series of Neon calibration using (a) Long-wave
and (b) Mid-wave bands.

Calibration done daily using clear ocean tropical subsets
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CrIS Frequency Calibration vis Upwelling Radiances
Using Long-wave Band

Left: All fovs, Right: Mean and Std (over FOVs)
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Upwelling frequency calibration mirrors the Neon calibration of the metrology
laser. If the CMO has not been updated (waits for a 2 ppm change), this means
the metrology laser has indeed drifted. If the Neon was drifting, we would not
see the same shift in the upwelling spectra (again assuming the CMO operator
remains unchanged). Slight differences among FOVs.
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CrIS Frequency Calibration vis Upwelling Radiances
Using Mid-wave Band

Left: All fovs, Right: Mean and Std
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The mid-wave frequency calibration shows a frequency drift very similar to
long-wave. I do not know why the mid-wave frequency calibration varies by up to
3.5 ppm among FOVs. We saw this in the Feb. 25 data. D. Tobin’s relative
calibration indicates this is incorrect.
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Neon vs Upwelling ν Calibration
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SDR algorithm waits for a 2 ppm Neon shift to re-compute new CMO
Presumably that has not yet happened, so cannot test
Thus, upwelling calibration roughly follows Neon
Differences may be upwelling algorithm issues?
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Radiometric Variability versus 9 Detectors

Enable NWP Centers to use common bias correction for all
detectors. Lesson learned from IASI.
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Bias vs Interferometer Scan Direction
Boxcar Apodization, greatly reduced with Hamming, etc. apodization

Ringing differences with scan direction. Does not appear to be an
algorithm bug. Also seen in low-wavenumber edge of water band,
and in EDR residuals, even with apodization.
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Noise Performance
Work by Mark Esplin, Utah State Space Dynamics Laboratory
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CrIS High Resolution Mode

UMBC has processed all the CrIS high-resolution mode data
from Feb. 23, 2012 into calibrated radiances using CCAST

Liens on these radiances:
Non-linear correction not applied (no effect on shortwave)
Nominal geolocation (good enough for most purposes)
Not in SDR format
Uses our best-effort CMO apodization removal operators from
the July time-frame.
These data recorded with the old FIR decimation filter

We have computed clear-sky observed radiances for every
observation

For a single southern ocean granule we have compared these
data to IASI data in the same region, suitably degraded to CrIS
0.8 OPD resolution.
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Example High-Resolution Spectra
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Example Spectra: Shortwave Only
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High-Resolution CMO Operator

UMBC developed a high-resolution CMO operator

Matrix inversion to derive CMO operator condition number
goes from 1 for center FOV to 106 for corner FOVs.

With careful filtering, high condition number can be handled

Note below: large relative ν offset of off-axis spectra; Left:
Normal Mode, Right: High-resolution Mode
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Relative Error in CMO Corrections

Plot shows single uniform 3x3 spectra
Difference curves (from FOV5) are uniform in frequency
Correction errors close to radiances values for cold observations.
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CMO Correction Errors Reduced with Hamming
Apodization

Same data as in previous slide, but Hamming apodized
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CMO Correction Errors in Brightness Temperature:
Hamming

FOVn-FOV5 differences multiplied by 5X and offset by 260K
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High-Resolution Validation: CrIS vs IASI B(T)
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(a) CrIS/IASI Obs, Hamming Apodized.
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(b) CrIS/IASI Obs, Hamming Apodized:
Zoom.
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High-Resolution Validation: CrIS vs IASI Biases
Biases with respect to ECMWF
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(c) CrIS/IASI Bias, Hamming Apodized.
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(d) CrIS/IASI Obs, Hamming Apodized:
Zoom.

Note in (c,d) above, one expects IASI and CrIS window channels to differ
by 0.1K due to diurnal variation in the SST. Here we use a constant
diurnally averaged SST. Thus, the bias difference between CrIS and IASI is
about 0.1K less than shown here for window channels!
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CO Retrievals from High-Resolution Mode Spectra
Left: CrIS, Right: AIRS Color Scale in K

“Retrieval” is just bias between Obs and Calc radiances for a single CO channel.
Calc radiances use ECMWF.
Remove scenes where window radiance bias > 5K (Clouds).
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CO Retrievals from High-Resolution Mode Specta
Left: CrIS, Right: MOPPIT
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CO Retrievals from High-Resolution Mode Specta
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Frequency Calibration Using High-Resolution
Short-Wave

High-resolution data used to calibration Neon, 1 day’s worth

High-resolution brings out very stable features with spectral
contrast
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High-Resolution SW Calibration of Neon
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Existing Neon calibration limited to non-polar clear ocean scenes (more
below).

As previously stated, unable to achieve high Neon calibration accuracy with
opaque LW, MW channels, which would allow calibration over the entire
orbit.

High-resolution in the SW allows us to use the very high-peaking lines in the
2350 cm−1 region, indicated by green circles above.
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LW Opaque Channel Calibration of Neon
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(e) LW opaque Neon cal channels.
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(f) LW vs SW cal channel kernels.

Opaque LW channels include emission from 200 mbar. Leads to inaccurate
NWP calculations (clouds, polar) with poor performance in the polar night.

Moreover, LW opaque channel frequency calibration not accurate;
presumably due to NWP radiance calculation errors.

With high-resolution, can use extremely high-peaking CO2 channel (5-10
mbar, 30+ km) with very good performance.
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Final Results: Neon Frequency Calibration
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LW High−Altitude
SW High−Altitude
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Each circle represents a 360 second

period that allowed an accurate

calibration.

Present operational Neon: black circles, LW window, ± 40 degrees latitude.

LW opaque channels provide more observations (blue circles). But, apparent
5 ppm offset, and very poor performance in the polar night.

SW opaque using CrIS high-spectral resolution mode gives extremely good
performance, low noise, well into the polar night portion of the orbit.

SW high-resolution agrees very well with LW window region Neon
calibration, maybe 1 ppm.

IASI (METOP-A/B) uses these channels for all metrology laser calibration for
all three bands.
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Radiance Intercomparisons

Following slides are a small sample of radiometric
intercomparisons between CrIS and AIRS/IASI.
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CrIS AIRS SNO BT PDF Differences: Dave Tobin/UW

CrIS%
AIRS%Lo

g%
N
um

be
r%

BT
%D
is
tr
ib
u6

on
s%

SW%window%
2510%cm@1%

Upper%Trop%H2O%
1592%cm@1%

LW%window%
835%cm@1%

BT
%D
iff
er
en

ce
%

Di
st
rib

u6
on

s%

0.020%±%0.004%K% 0.067%±%0.002%K% @0.058%±%0.003%K%

20 

CrIS/AIRS%comparisons%for%Sample%Wavenumber%Regions%



28

Intro Validation High-Res Mode CO High-Res ν Cal Intercal

CrIS Detector InterCal using AIRS/VIIRS:
Dave Tobin/UW
Only considering CrIS Inter-FOV differences
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CrIS and IASI Double-Difference
Using NWP Tropical Clear Scene Biases
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CrIS Bias vs IASI Bias (relative to ECMWF), tropics, ocean only

Very good agreement. But SST in calcs off by 0.1K! (maybe)
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CrIS and IASI SNOs + DDs: SNOs for May 2012 (LW)
SNOs from JPL Sounder PEATE: 10 min, 8 km windows, S. Hemis: -73 deg S.
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CrIS-IASI boxcar apodization has large ringing. Uncertain to cause, used all 4 IASI
FOVs, all 9 CrIS FOVs for now.

Significant (for climate) offset in the longwave!

Red curve is CrIS from CCAST (UW/UMBC Matlab SDR testbed algorithm). CCAST
much closer to IASI, but more work needed.

CrIS-IASI DD is bias double-difference from ECMWF
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CrIS and IASI SNOs + DDs: SNOs for May 2012 (LW)
SNOs from JPL Sounder PEATE: 10 min, 8 km windows, S. Hemis: -73 deg S.
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CrIS-IASI boxcar apodization has large ringing. Uncertain to cause, used all 4 IASI
FOVs, all 9 CrIS FOVs for now.

Significant (for climate) offset in the longwave!

Red curve is CrIS from CCAST (UW/UMBC Matlab SDR testbed algorithm). CCAST
much closer to IASI, but more work needed.

CrIS-IASI DD is bias double-difference from ECMWF
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CrIS and IASI SNOs + DDs: SNOs for May 2012 (LW)
SNOs from JPL Sounder PEATE: 10 min, 8 km windows, S. Hemis: -73 deg S.
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CrIS-IASI boxcar apodization has large ringing. Uncertain to cause, used all 4 IASI
FOVs, all 9 CrIS FOVs for now.

Significant (for climate) offset in the longwave!

Red curve is CrIS from CCAST (UW/UMBC Matlab SDR testbed algorithm). CCAST
much closer to IASI, but more work needed.

CrIS-IASI DD is bias double-difference from ECMWF
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CrIS and IASI SNOs + DDs: SNOs for May 2012 (LW)
SNOs from JPL Sounder PEATE: 10 min, 8 km windows, S. Hemis: -73 deg S.
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CrIS-IASI boxcar apodization has large ringing. Uncertain to cause, used all 4 IASI
FOVs, all 9 CrIS FOVs for now.

Significant (for climate) offset in the longwave!

Red curve is CrIS from CCAST (UW/UMBC Matlab SDR testbed algorithm). CCAST
much closer to IASI, but more work needed.

CrIS-IASI DD is bias double-difference from ECMWF
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CrIS and IASI SNOs: Data for May 2012 (MW)

1300 1400 1500 1600 1700

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

NH (day)

Wavenumber (cm−1)

C
rI

S
−

IA
S

I i
n 

K

 

 

IDPS Boxcar
IDPS Hamming
Std. Err

CrIS-IASI boxcar apodization again has ringing.

Very good agreement. Can we determine interconsistency below 0.05K?
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CrIS-AIRS SNOs Locations
With 10-min,8 km window obtain full latitude range!
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Unlike IASI-AIRS or IASI-CrIS, wide latitude range of SNO’s.

This allows very detailed inter-comparisons as a function of scene type. Here we

examine SNO differences with scene temperature for one channel.
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2552 cm−1 SNOs for AIRS, CrIS

160 180 200 220 240 260 280 300 320
0

2000

4000

6000

8000

10000

12000

14000

16000

B(T) in K

N
um

be
r 

of
 O

bs

 

 

AIRS
CrIS

160 180 200 220 240 260 280 300 320
180

200

220

240

260

280

300

320

AIRS B(T) in K

C
rI

S
 B

(T
) 

in
 K

 

 

2552 cm−1

Good number of SNOs over a large range of B(T)’s

CrIS hits a B(T) floor around 200K.
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SNO AIRS-CrIS: Longwave
Early Global SNO Comparisons Using AIRS-to-CrIS Conversion
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CCAST vs IDPS: Avg Radiometric Differences
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Possible Errors for High Temperature Scenes
Real part of 860 cm−1 vs Imaginary Part

Color scale is number of observations
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