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Background/Motivation

AIRS V5+ retrieval files include QC error estimates.

— Error estimates are derived using a statistical regression between AIRS quality
parameters and differences between ECMWF and AIRS L2 products.

— QC error estimates are derived at the end of the retrieval and are therefore
not optimally used within the L2 software/algorithms.

The current algorithm lacks the ability to accurately calculate and
propagate internal error estimates-important as these are used to
stabilize retrievals

— Discussed by George (context of cloud-clearing) yesterday.

— Initially shown by Barnet (2004, 2005...), detailed analysis of CCRs in 2007-8
timeframe.

— Ensemble error estimates (static first guess error) and null estimates (retrieval
error floor) files include no information on case-dependent magnitude of
errors or vertical or inter-product correlations - need revisiting

Averaging kernels and error estimates are inter-related.

— Our ability to accurately characterize our L2 retrieval’s dependence on the FG
(a priori) state is directly dependent on our ability to characterize errors within

the algorithm.
NOAA is funded through ROSES 2009 to enable propagation of errors
within the algorithm. Work should lead to:
— More accurate products-needs to be demonstrated.
— Better product quality assessment- better averaging kernels and error bars.



Objectives

1) Provide characterization of end-to-end AIRS retrieval system
errors.

—  Requires knowledge of input errors (either regression, climatology,
NN, NWP?) as well as optimization of retrieval algorithm constraints.

—  Requires estimation of CCR errors — not trivial.

—  Work with modeling groups to best define product output formats
(error covariance, averaging kernels, etc.).

2) Improve spatio-temporal stability and climate quality of the AIRS
retrieval with respect to trace gas initialization (CO,, CO, CH,, etc.)
— Update and maintain existing trace gas climatologies.
—  For CO, we currently are using a linear trend — test other
approaches.
3) Modify down-stream algorithms (e.g., O,, CO, CH,) to take
advantage of 1) and 2)



ERROR ESTIMATES — THE EASIER
PART



Averaging Kernels and Error Estimates

* Averaging kernels represent the response of a
retrieval to some perturbation in the true
atmospheric state and also the dependence of
the retrieval on first guess assumptions.

* For a given iteration, we can linearize our
retrieval equation to enable an estimation of
the bias in the retrieved state.
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Can our algorithm propagate a linear error estimate?

Following 2 slides show examples of predicted propagated
error in CLEAR simulation using ad-hoc Markov covariance
matrices:

j—
Sl.’j = 0,0, exp(—‘ ; ‘)
Given initial biases in the state (e.g. from regression,
climatology, NN, etc.), background parameters (i.e, things
held fixed in a given step) and instrument and forward model
noise estimates can we analyze the propagation of bias
through our algorithm
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Example estimation of T(p) retrieval bias for a clear-sky scene

Midlatitude Profile
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Example estimation of H,0(p) retrieval bias for a clear-sky scene

Midlatitude Profile
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Discussion

Previous example showed that we are able to estimate the
bias in a simulated clear-sky temperature and water
retrieval using straightforward error propagation
techniques.

Results are promising but:

— initial error is based on random perturbations eigenvectors of S;.
Estimated smoothing error is well constrained by assumed a pr/or/
covariance. Won’t be true for a system that uses regressions.

— clouding-clearing errors that are more difficult to predict and propagate
and are not included in this analysis.

In practice we cannot know the magnitude and sign of the
initial state bias, background bias, and bias contributions
due to instrument and forward model uncertainties.

The best that we can do is use a statistical estimate of the
uncertainty (covariance) in the various inputs to the
algorithm.
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What we need to propagate an error estimate
(clear-sky)

* S_-initial startup state (regression, climatology,
SCCNN, NWP?) covariance

* S,— Things held fixed covariance (e.g., OH,O(p) (0H,O
()", 005(p) (605(p))",... in T(p))
* K, — derivatives with respect to things held fixed.

* S.— estimate of instrument error

S = (A-DS,(A-I)" + GK,S,(GK,)" + GS,G’
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Example estimation of error estimates for a clear-sky scene

Midlatitude Profile
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Example estimation of H,0(p) retrieval bias for a clear-sky scene

Midlatitude Profile
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ERROR ESTIMATES — THE HARDER
PART



Discussion of the Estimation of Uncertainty in our
Cloud Corrections

Previous examples show that
for most cases initial errors
within several Kand 80% H,0
we should be able to
propagate errors through our
algorithm.

Cloud corrections can be
many 10’s of K and therefore
the uncertainties in cloud-
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Use of climatological covariance as a
cloud-clearing constraint

* George, Evan and | have shown in the past
that over the ocean (tropics especially) the
surface leaving radiance is well constrained by
the climatological surface temperatures

— We can use this property as a constraint to the
cloud-cleared radiances

— Questions about what do we do over land? At
higher latitudes?



Work Plan (over the next year)

 Work with JPL on the estimation (calculation) of system startup
biases and error covariance matrices (may already exist for
climatology system).

— Replace static ensemble error estimates and retrieval null estimates
with more realistic error covariances (lat,lon,time,etc.).

* Install and provide a demonstration of the error propagation
routines in the NOAA offline system

— NOAA gridded datasets, NOAA radiosondes, etc. used to characterize
and “validate” outputs.

 Test and demonstrate our ability to estimate and propagate cloud-
clearing uncertainties
— use collocated MODIS data to QC and/or

— use collocated MODIS data directly (as the clear estimate) estimate
our cloud-clearing extrapolation parameters (eta’s).



THE END. THANKS.



Error Estimates: Partitioning of Terms

* Linear error estimate for a regularized retrieval is
partitioned into three terms

— Smoothing term (finite width of kernel functions and
correlation on first guess or a priori errors)

— Systematic terms (errors due to interference of other
geophysical parameters, cloud-clearing, etc.)

— Random term (instrument noise)

* A-priori covariance can be derived from a validation
ensemble — such as operational sondes, aircraft, etc.

* Smoothing & Random components are the easiest to
predict. The systematic errors (esp. those due to
cloud-clearing) are the most difficult.



