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•  Extension of k-distribution technique, e.g. Goody et al. (2011) 
•  For present application: model observations as weighted sum 

of monochromatic radiances 
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OSS Overview 
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OSS	
  model	
  localized	
  training	
  (Moncet	
  	
  et	
  al.,	
  2008)	
  :	
  
-­‐  Search	
  method	
  finds	
  op:mal	
  {νi}	
  (nodes)	
  selec:on	
  to	
  fit	
  reference	
  
radiances	
  (for	
  set	
  of	
  training	
  scenes)	
  in	
  individual	
  channels	
  within	
  
prescribed	
  accuracy	
  	
  

-­‐ Weights	
  wli	
  obtained	
  by	
  linear	
  regression	
  
-­‐  Reference	
  model:	
  LBLRTM	
  (v12.1)	
  



•  Selectable accuracy at training  
•  Selectable number of variable species (at training or 

at run time) 
•  Fast (possibility of trade off between speed and 

accuracy) 
•  Applicable to clear/cloudy (scattering) radiances 

over ocean/land background 
•  Spectral coverage: microwave to Vis/UV (LTE) 
•  Any viewing geometry 
•  Local/global training (see below) 
•  Applicable to PCs, channel radiances 
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Attributes (summary) 



•  Sensor files: contain node-to-channel (or PC) mapping-index 
information and OSS weights  

•  Absorption look-up table: mono-λ absorption coefficients (at each 
node) for individual molecules as a function of temperature and pressure 

–  Accommodate multiple sensors 
–  Fixed/variable species partitioning selectable at run time 
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OSS forward model 

Variable	
  
molecule	
  
selec:on	
  

Default	
  
concentra:on	
  

profiles	
  

	
  Sensor	
  1	
  
Sensor	
  2	
  

Sensor	
  3	
  

Sensor	
  4	
   Output 
•  Radiances 

or PCs 
•  K-matrix or 

adjoint 
Absorp:on	
  

LUT	
  1	
  
Absorp:on	
  

LUT	
  2	
  

OSS	
  forward	
  model	
  



•  Number of variable species treated by 
OSS model increased to 20 in the 
infrared to accommodate TES 
applications 
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Variable species Example of Methanol (CH3OH) signature in TES observations over  
the South Pacific (east of Australia) after the “Black Saturday” fires  
in February of 2009 

H2O CO2 O3 N2O CO 
CH4 SO2 NH3 HNO3 OCS 
HCN C2H2 HCOOH C2H4 CH3OH 
CCl4 CFC-­‐14 CFC-­‐11 CFC-­‐12 HCFC-­‐22 
CFC-­‐113* 
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6-­‐molecule	
  model	
  
20-­‐molecule	
  model	
   Before	
  CH3OH	
  retrieval	
  	
  

AVer	
  CH3OH	
  retrieval	
  



•  Relatively few scenes needed: 
–  52 atmospheres from diverse ECMWF set (noise added 

and trace species added at random)  
–  x 5 scan angles between 0-60° (higher angles for 

geostationary sensors) 
•  For localized instrument function: model trained in clear-sky 

with spectrally flat emissivity works in cloudy conditions and 
over ocean and land 
–  analogous to treatment of surface and clouds with channel-

transmittance parameterizations 
•  Non-apodized interferometer functions (sinc function): 

need to include spectral variations in surface emissivity and 
cloud properties in training. 
–   total number of scenes remains of the order of a few hundreds. 
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Training scenes 



•  Flat emissivity training inadequate when 
dealing with extended spectral regimes 

•  Sample of typical emissivity spectra (w 
random perturbations added)included in 
training to remove spectral correlations and 
bring model accuracy within specs 

•  Nominal training accuracy: 0.05K 
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Unapodized (sinc) function – land training 

Selected land surface emissivities from merged University of Wisconsin 
and NASA Langley data sets (Borbas and Zhou) 

#20	
  

#177	
  

#112	
  

#56	
  

#40	
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Cloud impact on clear-sky trained sinc model 
 

CondiDons:	
  nadir;	
  ice	
  cloud	
  at	
  300	
  mb;	
  Deff	
  =	
  20	
  µm;	
  
4-­‐stream	
  adding-­‐doubling	
  soluDon)	
  
Nominal	
  accuracy	
  =	
  0.05K	
  

•  Unapodized ILS: clear-sky trained model 
does not meet requirements in cloudy 
conditions  

–  Cloud impact worse for small particle sizes and 
optical depths around 2-3 

–  Cloudy scenes must be included in training to 
capture spectral variations in cloud optical 
properties 

Unapodized	
  

Gaussian	
  apodized	
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Global OSS solution 
•  “Global” OSS node selection applies to all channels at once 

–  Reduces total number of nodes (Ntot), i.e., RT execution and LUT size, by an order 
of magnitude 

•  With rigorous method, search time increases with number of possible node 
combinations 

–  Best performance achieved by applying methodology from Moncet et al. (2008) to 
contiguous pairs of channels and increasing the size of channel groups at each step   

global	
  

localized	
  

Dominant with 
local (and, with 
global, in VIS) 

	
  	
  	
  	
  	
  increases with global 
training. Contribution 
minimized by reducing 
Npar or Nobs 

N

RT	
  
Jacobian	
  mapping	
  	
  

(K-­‐Matrix)	
  

RT	
  model	
  Dming	
  

Final	
  pass	
  (FP):	
  	
  
Assigns	
  minimal	
  #	
  nodes	
  (among	
  Ntot)	
  to	
  meet	
  	
  
accuracy	
  requirement	
  in	
  each	
  individual	
  channel	
  

Ntot 
N
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Performance examples 
Sensor	
  

LW	
   MW	
   SW	
  
Range	
   Resolution	
   Range	
   Resolution	
   Range	
   Resolution	
  

AIRS	
   649 - 1136	
   0.41-­‐1.04	
   1265 - 1629	
   1.05-1.39	
   2169 - 2674	
   1.75-­‐2.13	
  
IASI	
   645-­‐1210	
   0.5	
   1210-­‐2000	
   0.5	
   2000-­‐2760	
   0.5	
  
CrIS	
   650-­‐1095	
   0.625	
   1210-­‐1750	
   1.25	
   2150-­‐2550	
   2.5	
  

 

•  Total number  of nodes (bottom 
left) and average number per 
channel (bottom right) with local 
and global training for IASI, 
AIRS and CrIS (unapodized) 

•  Training accuracy = 0.1*NeDN 



Spectral Mixing 
•  IASI	
  (Band	
  1+	
  2)	
  global	
  training:	
  	
  	
  
	
  	
  	
  	
  	
  <300	
  nodes	
  represent	
  5420	
  IASI	
  channels	
  
•  No	
  significant	
  spectral	
  mixing	
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NH3	
  Jacobians	
   HNO3	
  Jacobians	
  



•  Use of PC to compress spectral information has been thoroughly 
investigated in past studies 
–  EOFs must be carefully chosen so signal due to trace species not “wiped 

out” 
–  “Spectral mixing” prevents one from excluding undesired features e.g., cloud 

top, surface 

•  EOFs treated in OSS as any other instrument function 
•  Same OSS (local/global) training method applies 

•  Main speed gain (Ntot) in radiance domain comes from global 
training: no further gain expected by dealing with PCs instead of 
radiances 
•  For a same Ntot, radiance and PC-model performances are 

equivalent (so long as information content is preserved through PC 
filtering) 

key	
  limitaDon	
  for	
  satellite	
  data	
  assimilaDon	
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PC compression 



•  Radiance-trained model can be transformed into a PC model by 
simply re-computing the weights: 

     
     or vice versa (equation not shown) 

•  When all nodes are used to reconstruct each channel, transformed weights are 
optimal (accuracy of transformed model same as directly trained PC-model) 

 
•  With transformed models, Nav = Ntot which slows down Jacobian 

mapping in K-matrix. 
•  OK when transforming radiance trained model into PC (few PCs to model) 
•  Speed loss important when transforming PC-trained model into channel 

radiances (many channels) 
•  Best to train directly in radiance domain for processing channel radiances and in 

PC domain for processing PCs 
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Model transformation 

(same	
  as	
  Eq.1	
  -­‐	
  vector	
  form)	
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Performance Examples 

Representation	
  
Training	
  
Mode	
  

Retrieved	
  profiles	
  in	
  
geophysical	
  space	
  

Retrieved	
  profiles	
  in	
  EOF	
  space 	
  

Channel	
  
Radiance 	
  

Localized	
   0.140	
   1.00	
   0.179	
   1.00	
  

Global	
   0.033	
   4.28	
   0.011	
   16.53	
  

PC-­‐trans	
   0.212	
   0.66	
   0.040	
   4.50	
  

PC	
  

Localized	
   0.028	
   5.09	
   0.030	
   6.02	
  

Global	
   0.012	
   11.28	
   0.008	
   21.95	
  

Chan-­‐trans	
   0.015	
   9.48	
   0.008	
   22.46	
  

Node	
   Global	
   0.004	
   32.12	
   0.006	
   28.34	
  

 

IASI Band 1 +2 clear-sky timing comparison 
(forward model only: radiance + Jacobians  – no inversion)  

Computa:onal	
  gain	
  
(local	
  training	
  =	
  reference)	
  

Timings	
  in	
  seconds	
  	
  



•  Predict node radiances from real observations 
•  Perform inversion in node-space (no Jacobian mapping) 
•  Unlike PC: no spectral mixing problem 
•  In assimilation: same approach as with channels 

–  Bias correction 
–  Node selection 
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Node based inversion 

IASI	
  retrieval	
  inter-­‐	
  comparison	
  
(EUMETSAT	
  –	
  several	
  
internaDonal	
  parDcipants)	
  	
  	
  
Differences	
  between	
  node-­‐space	
  
and	
  channel	
  space	
  results	
  within	
  
retrieval	
  uncertain:es	
  	
  
(and	
  well	
  within	
  range	
  of	
  
solu:ons	
  obtained	
  with	
  different	
  
algorithms)	
  
	
  

Node	
  vs.	
  channel	
  T	
  (le])	
  and	
  
q	
  (right)	
  retrieval	
  differences	
  
	
  	
  
Selected	
  IASI	
  FOV	
  from	
  Udine	
  
(Italy):	
  July-­‐	
  November,	
  2009	
  

Node-­‐channel	
  Water-­‐vapor	
  differences	
  Node-­‐channel	
  Temperature	
  differences	
  



•  OSS technology now mature 

–  Choice of options(local/global training; channel radiance/EOF. node-based inversion) 
•  Localized radiance training: fast and robust (used for e.g., trace species retrieval) 
•  Global training with node-based inversion:  ~20 times faster (need more validation 

with e.g., TES and comparisons with to PC-inversion) 

–  Used in JPSS/CrIS (not recently updated), in DoD future operational cloud analysis 
and for TES retrievals 

–  JCSDA/CRTM-OSS 
–  Independently tested at U. Wisconsin (UWPHYSRET package) 
–  Acquisition on by EUMETSAT for production of MTG/IRS Level 2 product 

•  On going work: 
–  Validation in precipitating environment (microwave) 
–  Visible training: actually less demanding 
–  Handling of Doppler shift/Zeeman splitting 
–  Scattering calculations acceleration 

7/25/13 AER Company Proprietary Information. © Atmospheric and Environmental Research, Inc. (AER), 2011. 16 

Summary 


