
Estimation of Surface CO2 Fluxes
with Data Assimilation

(plus latent and sensible heat fluxes)

*Ji-Sun Kang, *Eugenia Kalnay, *Takemasa Miyoshi,
+Junjie Liu, and #Inez Fung

*University of Maryland, College Park
+NASA, JPL, #University of California, Berkeley



Success!

 With an OSSE, we show it is possible to estimate surface carbon
fluxes using 6 hour data assimilation and a realistic observing
system.

 We use no a priori information.

 We could apply the same advanced methodology to assimilate AIRS
retrievals and estimate surface fluxes of heat and moisture.



Surface CO2 flux estimation: top-down approach

 Top-down approaches
• Estimate surface fluxes from atmospheric CO2 obs.

 Carbon Tracker (Peters et al., 2007)
• One of the most advanced top-down approaches
• Uses 5 weeks of CO2 observations: ill-posed problem
• A priori information: CASA, eco-regions, etc.
• No explicit treatment of transport errors

 Alternative approach: Simultaneous analysis of
meteorology and CO2 using LETKF
• 6 hours of meteorological and CO2 observations
• No a priori information needed for fluxes
• Transport errors are reflected in CO2 analysis
• Observing System Simulation Experiments (OSSEs)



UMD-Berkeley LETKF-C System

 Simultaneous analysis of carbon and meteorological
variables
• Update all variables at every six hours (avoids ill-posedness)
• Multivariate analysis with localization of variables (Kang et al.,

2011)
• Advanced LETKF methodologies

• Adaptive inflation (Miyoshi, 2011) and a vertical localization of column
CO2 satellite data

Observations
U, V, T, q, Ps, C
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U, V, T, q, Ps, C
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U, V, T, q, Ps, C, CF
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Observing System Simulation Experiments

 Nature run (assumed true state in the experiments)
• SPEEDY-C: the modified version of SPEEDY (Molteni, 2003)

• AGCM with a trace gas of atmospheric CO2 (C)
• Prognostic variables: U, V, T, q, Ps, C
• No chemical process of carbon and no diurnal cycle

• “True” CO2 fluxes (CF)
• A constant fossil fuel emission (Andres et al., 1996)
• CASA terrestrial CO2 fluxes (Randerson et al., 1997)
• Oceanic CO2 fluxes (Takahashi et al., 2002)

 Forecast model
• SPEEDY-C with persistence forecast of surface CO2

fluxes (CF)
• CF is updated only by the data assimilation



Simulated Observations

 Meteorological variables
• Conventional data

• U,V,T,q: black dots (every 12 hours)
• Ps: gray squares (every 6 hours)

 Atmospheric CO2 concentrations
• In-situ & flask observations

• Weekly records: black dots (107)
• Hourly records: gray dots (18)

• Satellite data: column mixing ratios
• GOSAT (gray squares)
• AIRS (covers half of globe with ascending &

descending modes)

 No direct measurement of surface
CO2 fluxes



Initial conditions for carbon variables

True CO2 fluxes @ initial time
True atmospheric CO2 near surface

@ initial time

Initial condition of surface CO2 fluxes
Initial condition 

of atmospheric CO2 near surface

No initial conditions information!
No a-priori information!
No surface flux model!



Surface CO2 flux estimation from LETKF-C

 Impact of CO2 observations on surface CO2 flux
estimation

• SFC: in-situ flask data
• SFC+AIRS
• SFC+GOSAT
• SFC+GOSAT+AIRS

RMSE of surface
CO2fluxes
(gC/m2/yr)

RMSE of surface
atmospheric CO2
(ppmv)



Observation impact

 Global maps of surface CO2 fluxes in different seasons
A: True fluxes C: SFC+GOSATB: SFC+GOSAT+AIRS D: SFC



Application to heat/moisture flux estimation

 Can we estimate surface heat/moisture fluxes
by assimilating atmospheric temperature/moisture
observations? We can use the same methodology!

 OSSEs
• Nature run: SPEEDY
• Forecast model: SPEEDY with persistence forecast

of sensible/latent heat fluxes (SHF/LHF)
• Observations: conventional observations of (U, V, T, q,

Ps) and AIRS retrievals of (T, q)
• Initial conditions: random (no a-priori information)
• Fully multivariate data assimilation
• Analysis: U, V, T, q, Ps + SHF & LHF every six hours



Result: Analysis of Sensible Heat Flux



Result: Analysis of Latent Heat Flux



Time series of LHF/SHF

 Black: nature
 Color: analysis of LHF(blue)/SHF(red)

Recall that LHF & SHF
are updated only by the
data assimilation here!

Promising results from
the estimation of
“evolving parameters”
with data assimilation

1 2



Summary

 We succeeded in estimating surface CO2 fluxes with an
advanced LETKF-C system, even without any a-priori
information (OSSEs)

 Dedicated CO2 monitoring satellite (GOSAT/OCO-2)
contribute to the surface CO2 flux estimation significantly

 AIRS CO2 retrievals help CO2 flux estimation due to
better analysis of atmospheric CO2 circulation

 The same methodology used for carbon cycle data
assimilation could be applied to surface heat/moisture
flux estimation

 AIRS temperature/moisture profile data make possible to
estimate sensible/latent heat fluxes over the globe



Briefly: AIRS forecast impacts

 Li et al (2010):  Impact of assimilating AIRS
temperature retrievals (positive).

 Liu et al. (2009): Impact of assimilating AIRS
moisture retrievals (positive).

 Miyoshi and Kunii (2011): Impact of assimilating
AIRS T and q retrievals in forecasting typhoon
Sinlaku (positive).



Assimilation of AIRS temperature retrievals

 System :  NCEP GFS (T62L28) and 4D-LETKF
 Control Run: All operational observations except for radiances

(Non-radiance data, Szunyogh et al. 2007, Whitaker et al. 2007 )
 AIRS Run:
 Non-radiance plus AIRS temperature retrievals [Chris Barnet (NOAA)]
v5 emulation with 3 deg * 3 deg resolution
EXP1 : Ignored retrieval  error correlations,
       but increase the error standard deviation to be 2K

 Verification: Operational NCEP analysis at T254L64,
assimilating all operational observations. (Not “truth”!).
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500 hPa Temperature analysis error averaged over Globe

Non-radiances Non-radiances + AIRS temperature retrieval

Result are similar to non-radiance when there
are no available retrievals

No AIRS retrievals

Consistent
reduction of

errors with
AIRS

retrievals!



500 hPa Temperature analysis error

Non-radiances Non-radiances + AIRS temperature retrieval

NHSH

Consistent
positive

impacts even
in the NH!



Impact of AIRS Temperature retrievals
on zonal wind

500 hPa Temperature 500 hPa zonal wind

AIRS Temperature retrievals also have positive
impact on other variables



48 Hour Forecast RMSE
SH

Temperature

NH

Non-radiances Non-radiances + AIRS temperature retrievals

Geopotential

Height



Liu et al: zonal average zonal wind 48-hour forecast RMS error difference
between humidity run and the control run

Passive q - control Uni-variate q - control multivariate q - control

• Uni-variate q has much larger positive impact on 48-hour zonal wind forecast
accuracy than passive q (no assimilation)

• Multivariate q has largest positive impact on 48-hour zonal wind forecast accuracy



Miyoshi and Kunii: Impact of AIRS retrievals on forecast of typhoon Sinlaku

 

AIRS improved significantly track forecast 
and to some extent, intensity forecast


