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Looking for differences in deep and shallow tropical convection
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Identification of Active Convection
(using CloudSat; based on TRMM/CloudSat collocation, looking at TRMM-identified
convection)

1. Cloud Certain from Cloud-Top Height (CTH) to 1 km above surface
2. Presence of >0 dBZ echo
3. CALIPSO CTH within 1 km of CloudSat CTH (proxy for optically thick)

Gray marks actively-convective regions of the tropical oceans
(long-term-mean OLR < 240 W/m? for one month)




Occurrence frequencies of deep and shallow convection.
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Counts/Occurrence frequencies by region.

# Convective Clouds 10149 23929

# Congestus 8243 18100
(81%) (76%)

# Deep 1906 5829
(19%)  (24%)

Congestus/Deep : : 4.3 3.1

Possible reasons for greater amounts of Congestus:
e Differences in environmental vertical velocity

e Changes in vertical temperature gradient

e Differences in midtropospheric moisture




1. Differences in Environmental Vertical Velocity / Heating rate?
Cmega PDF, NP & MC
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assumption for subsiding air)
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eSlight changes in the distribution
eMedian values differ by 0.111 hPa/day—

0.01 not significant
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1. Differences in Environmental Vertical Velocity in models?
MERRA omega distribution
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2. Changes in Vertical Temperature Gradient from AIRS?
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eLittle difference in mean 6
profile

*1 K difference near 350
hPa
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dB/dp-congestus only

MC
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eLapse Rate = 0 signifies dry
adiabat; lower values suggest
more stable air

*Suggests greater stability in
the MC at 400, 600 hPa based
on temperature alone

*If there’s more congestus in
the NP, we’'d expect greater
stability there, not MC
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3. Differences in Midtropospheric Moisture from AIRS
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*Mean NP RH in presence of
Deep clouds:
65% (70% MTC)
*NP in presence of Congestus:
50% (60% MTC)




Frequency of Occurrence, MTC-NP

Gray = Congestus more likely in
North Pacific when the RH is a
specific value at a given height

1.5 contour = 50% more likely to
occur

60
relative humidity (%)




Equivalent Potential Temperature from AIRS
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Often used as indicator of
convective instability

Higher 6, in the presence of MC
congestus than NP
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How many convectively unstable profiles?
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*Instability common near surface, 300 _
hPa

*20% of Deep profiles, 15% of Congestus
profiles unstable near 500 hPa

*600, 400 hPa very stable
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How many convectively unstable profiles?
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Conclusions

* One years’ worth of coincident CloudSat/AIRS profiles were analyzed over the tropical Oceans,
looking at midtropospheric congestus and upper-tropospheric deep convective clouds.

* Regional differences were noted in the ratio of congestus/deep cloud observations
* Congestus more than twice as common over the NP than MTC

* Lower water vapor amounts in the NP noted in coincident AIRS data; dry air entrainment from
rising convection encountering drier air could stop development

* Changes in equivalent potential temperature (measure of convective instability) resulted from
differences in water vapor, temperature
 Greater stability above 550 hPa in environment surrounding congestus clouds than deep
clouds
* acts as cap to convection
* Cap stronger over the NP than MTC, which could lead to more congestus in the NP




