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Successful Postlaunch NPP Cal/Val:
Intellectual Framework

• Goals:
– Error characterization of radiances and derived products that is:

Extensive (global, seasonal, all channels, etc.)
Comprehensive (wide assortment of meteorological conditions, ground 
truth, etc.)

– Error attribution to atmospheric, sensor, or algorithm mechanisms

• Necessary Ingredients:
– Prelaunch sensor testing and calibration
– Prelaunch algorithm evaluation
– Error models and budgets (including ground truth)
– Postlaunch radiance/product characterization
– Refinement of error models/budgets based on observations
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Major Components of ATMS Cal/Val

• ATMS/CrIMSS System Error Model/Budget
– RDR TDR SDR EDR+IP
– Derived and evaluated with three data sources:

Thermal Vac; Simulated data; Proxy data

• Post-Launch Cal/Val Planning

• Development of Cal/Val Tools
– Neural network EDR algorithm
– Matchup/RadTran comparison tools (SDR)
– Raw radiance assessment tools (RDR)

• NAST-M Aircraft Comparisons

• Improved Pre-Launch Characterization (C1, but maybe PFM) 
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ATMS/CrIMSS RDR/SDR/EDR Error Modeling

• There is a need for simple, accurate error models with budgets 
for accuracy and precision resulting from:

– Scan biases, nonlinearity, calibration biases, NEdT, pointing errors, 
polarization impurity, many others…

• RDR error model based on radiometric math model and thermal 
vacuum environmental testing

• SDR error model (calibration, geolocation, resampling)
– Based on Phil Rosenkranz’s radiative transfer package
– Backus-Gilbert footprint processing

• EDR error modeling is much more difficult (highly nonlinear and 
dependent on scene conditions)
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ATMS Proxy Data Background

• “Proxy” ATMS data is needed to test operational software
– Observed data from on-orbit microwave sensors AMSU-A and MHS 

are transformed spatially/spectrally to resemble ATMS data
– Captures real-world atmospheric variations better than simulations 

based on imperfect/incomplete surface, atmospheric, and radiative 
transfer models

– Caveats:  Radiometric characteristics of original sensor are 
embedded in proxy data

• MIT-LL roles:  
– Generate ATMS proxy data and provide it to “NPOESS community”
– Coordinate with other proxy data providers to ensure consistency
– Solicit feedback from community to improve/extend data set
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Generation of ATMS Proxy Data

• AMSU-A/B observations can be transformed (spatially and 
spectrally) to resemble ATMS observations

– 11 channels are identical 
– 5 channels are identical EXCEPT for polarization
– 6 channels are new, but can be estimated [with some error]

– Footprint sizes and spatial sampling are different for 
frequencies < 89 GHz

– ATMS measures wider swath angles

– Orbits altitudes are slightly different
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ATMS Proxy Data Generation Flow Chart
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Overview of Methodology

• Generation of ATMS proxy data is non-trivial due to spectral 
and spatial differences between AMSU/MHS and ATMS

• A linear relationship (regression) is derived between ATMS 
and AMSU channels that are not common to both sensors

• Simulated data are used to derive the regressions

• The simulated data are calculated using global AIRS Level2 
profile data (Dec 2004 – Jan 2006), fastem 2.0 ocean surface 
model, and Phil Rosenkranz’s radiative transfer package

• The relationships between ATMS and AMSU can vary as a 
function of lat/lon, surface topography, and sensor scan 
angle.  Data stratification is used to improve the fit quality.
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Spectral Differences: ATMS vs. AMSU/MHS 

Ch GHz Pol Ch GHz Pol
1 23.8 QV 1 23.8 QV

2 31.399 QV 2 31.4 QV

3 50.299 QV 3 50.3 QH

4 51.76 QH

4 52.8 QV 5 52.8 QH

5 53.595 ± 0.115 QH 6 53.596 ± 0.115 QH

6 54.4 QH 7 54.4 QH

7 54.94 QV 8 54.94 QH

8 55.5 QH 9 55.5 QH

9 fo = 57.29 QH 10 fo = 57.29 QH

10 fo ± 0.217 QH 11 fo±0.3222±0.217 QH

11 fo±0.3222±0.048 QH 12 fo± 0.3222±0.048 QH

12 fo ±0.3222±0.022 QH 13 fo±0.3222±0.022 QH

13 fo± 0.3222±0.010 QH 14 fo±0.3222 ±0.010 QH

14 fo±0.3222±0.0045 QH 15 fo± 0.3222±0.0045 QH

15 89.0 QV

16 89.0 QV 16 88.2 QV

17 157.0 QV 17 165.5 QH

18 183.31 ± 1 QH 18 183.31 ± 7 QH

19 183.31 ± 3 QH 19 183.31 ± 4.5 QH

20 191.31 QV 20 183.31 ± 3 QH

21 183.31 ± 1.8 QH

22 183.31 ± 1 QH

Exact match to AMSU/MHS

Only Polarization different
Unique Passband

Unique Passband, and Pol. different 
from closest AMSU/MHS channels

M
H

S
A

M
SU

-A

AMSU/MHS ATMS

• ATMS has 22 channels and 
AMSU/MHS have 20, with 
polarization differences 
between some channels
−  QV = Quasi-vertical; polarization 
vector is parallel to the scan plane at  
nadir
−  QH = Quasi-horizontal; polarization 
vector is perpendicular to the scan 
place at nadir
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Methodology Details

Three step procedure:
1. Compile AIRS L2 profile ensembles for each stratification (~10,000)  

Scan Angles used 
to do Linear Regression

1.65°- 47.85°, Δ = 3.3°
51.15°

(Slide 1 of 3)

Stratifications planned:                                                                                            
Scan angle (16 angles total, from nadir out to 51.15̊ )
Ocean/Land
Latitude (North, Tropical and mid-latitude, South)
Surface pressure for Land (8 strats)
Total: 432 transformation matrices

AMSU and MHS Scan Angles

0.55° 47.85°
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Methodology Details

2.   Simulate ATMS, AMSU/MHS radiances with Rosenkranz radiative 
transfer model (RTM) software
−  Account for beamwidth and polarization per channel
−  Surface emissivity models: 

For ocean, use fastem2* with wind speed based on ECMWF 2005 data
For land, uniform distribution from [0.9 − 1] †

(Slide 2 of 3)

*See English & Hewison 1998, Deblonde 2000
†Hewison 2001 

Mean Wind Speed Over Ocean, ECMWF 2005 ECMWF Horizontal Wind Speed at 10m 
January 1st, 2005, 00hrs

m/s
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3.  Generate 22x20 transformation matrix (“C”) via linear 
regression for each stratification

( )
( ) NX

YXC
+

=
Cov

 ,Cov

YXv Cv +−⋅= )(  MHSAMSU,
real

ATMS
proxy

X
Y

= simulated ensemble of AMSU and MHS radiances

= simulated ensemble of ATMS radiances

N = AMSU and MHS noise

Linear regression of  X and Y:

Transformation matrix is applied
to real AMSU/MHS data:

Methodology Details
(Slide 3 of 3)
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Results

Transformation matrix for nadir (1.65°)
Ch GHz Pol
1 23.8 QV

2 31.4 QV

3 50.3 QH

4 51.76 QH

5 52.8 QH

6 53.596 ± 0.115 QH

7 54.4 QH

8 54.94 QH

9 55.5 QH

10 fo = 57.29 QH

11 fo±0.3222±0.217 QH

12 fo± 0.3222±0.048 QH

13 fo±0.3222±0.022 QH

14 fo±0.3222 ±0.010 QH

15 fo± 0.3222±0.0045 QH

16 88.2 QV

17 165.5 QH

18 183.31 ± 7 QH

19 183.31 ± 4.5 QH

20 183.31 ± 3 QH

21 183.31 ± 1.8 QH

22 183.31 ± 1 QH

ATMS

Exact match to AMSU/MHS

Only Polarization different
Unique Passband

Unique Passband, and Pol. different 
from closest AMSU/MHS channels

(ocean, mid-latitude)
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Example of ATMS proxy data

ATMS Channel 4, ocean, mid-latitude, January 5th, 2008 (12hrs)
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Note: The most extreme scan angles are not plotted here
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Validation Plan

• Use observed data to validate our proxy data, with two existing 
operational sensors with similar (but not identical) spectral 
characteristics (like ATMS relationship to AMSU/MHS)
 AMSU-B and MHS
 Use coincident data from NOAA-17 and METOP from 2008

Ch GHz Pol Ch GHz Pol
1 89.0± 0.9 QV 1 89.0 QV

2 150.0± 0.9 QV 2 157.0 QV

3 183.31 ± 1 QV 3 183.31 ± 1 QH

4 183.31 ± 3 QV 4 183.31 ± 3 QH

5 183.31 ± 7 QV 5 191.31 QV

AMSU-B MHS

Exact match to AMSU-B

Only Polarization different

Unique Passband

Unique Passband, and Pol. different 
from closest AMSU-B channels
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ATMS Proxy Data
Deliverables and Schedule

• We are using Oct. 19, 2007 MetOp-A observations for initial 
validation

• HDF format will be used  (compatible with PEATE?)

• We plan to deliver code (Fortran) and coefficients to PEATE

• Focus days to be specified

• Schedule: Initial delivery of “beta release” for testing
– Target date is June 1st
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ATMS Proxy Data Development Status

• General baseline code complete
– Pipeline of components for modeling ATMS, generating 

regression coefficients, applying coeffs to AMSU/MHS 
data, then co-locating to ECMWF (for sanity checking)

• Generation of C matrices for all stratifications is underway
– “beta” release will include data at all scan angles and a 

subset of stratifications
– Ocean “tropical + mid-latitude” matrices complete
– Land “tropical + mid-latitude” matrices in progress

• Validation underway using AMSU-B and MHS

• Initial beta release soon:  HDF output format planned
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Summary

• ATMS/CrIMSS error models/budgets are being developed to 
predict on-orbit performance and sensitivities

• Error models/budgets will be used during cal/val to characterize 
performance and help attribute sources

• ATMS proxy data is a critical component of prelaunch testing

• ATMS proxy data generator will be delivered to Sounder PEATE 
– Beta testing in progress, preliminary version ready in June
– We’ll work with PEATE and sounding science team to maximize 

utility and compatibility
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Backup Slides
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Example of ATMS proxy data

ATMS Channel 4, ocean, mid-latitude, January 5th, 2008 (12hrs)
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Note: The most extreme scan angles are not plotted

coast USGS land mask (used to identify ocean pixels) 
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ATMS “Footprint Matching”

Jenna Samra and Bill Blackwell
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Overview

• Resampling algorithm
– Projection geometry
– Scan geometry
– Backus-Gilbert coefficients

• Example of results
– ATMS channels 1-2 (5.2° BW)
– ATMS channels 3-16 (2.2° BW)
– ATMS channels 17-22 (1.1° BW)

• Next steps
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Projection to Earth’s Surface
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CrIS and ATMS Scan Parameters

• Δ cross-track displacement = step angle
• Δ along-track displacement = angular velocity x step time
• Scan separation = angular velocity x scan time

Parameter CrIS ATMS
-3 dB beam width [deg] 3.3 1.1, 2.2, 5.2
Step time [ms] 200 18.018
Full scan period [s] 8 8/3
Angular velocity [deg/s] 0.458 0.458
Step angle [deg] 10/3 1.11
Number of earth views 30 96
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Resampling Grid

FOR 1

FOR 15
FOR 1 FOR 15
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Backus-Gilbert Methodology

• Backus-Gilbert coefficients ai scale ATMS brightness temp 
to approximate CrIS brightness temp

ATMS Grid CrIS TargetCrIS Estimate

a7
a8

a9
a1

a2
a3

a4
a5

a6 =x ≈

BG Coeffs
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Choosing BG Coefficients

Goal: find coefficient vector a to minimize cost function Q

– Minimizing Q0  highest accuracy
– Minimizing e2  lowest noise amplification
– γ chosen as tradeoff between best fit and lowest noise

Result: least-squares minimization yields

where u, v, and V are specified in Stogryn, 1978

( )( ) ( )( ) γγ+γγ= sinawecosaQQ 2
0
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Along-Track Transects, 1.1° Beam Width

FOR #15 FOR #1
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Along-Track Transects, 2.2° Beam Width
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Along-Track Transects, 5.2° Beam Width

FOR #15 FOR #1
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Next Steps

• Evaluate AER coefficients
– Noise amplification
– Matching error

• Incorporate coefficients in TDR/SDR tools and error models 
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