

The CrIS NASA L1B Product and Project L1B – IMG – CHIRP

Joe Taylor and the CrIS NASA L1B Team UMBC

AN HONORS

UNIVERSITY

IN MARYLAND

Space Science and Engineering Center University of Wisconsin-Madison

NASA Sounder Science Team Monthly Meeting – Oct 2022 05 Oct 2022

Outline

- Introduction
- CrIS L1B
 - Unique attributes
 - Algorithm
 - Calibration parameters and traceability
 - Radiometric uncertainty
 - FSR and NSR product differences
- IMG
- CHIRP and RTA
- Summary

Outline

• Introduction

• CrIS L1B

- Unique attributes
- Algorithm
- Calibration parameters and traceability
- Radiometric uncertainty
- FSR and NSR product differences
- IMG
- CHIRP and RTA
- Summary

The CrIS NASA L1B Project and Product

- A low-cost, small team, PI led effort, tasked with efficiently producing extremely accurate, transparent, and traceable multi-sensor continuity radiance products needed for long-term trending of key climate variables
- Funded by NASA to develop calibration software to generate a climate quality CrIS L1B mission data record (SNPP, JPSS-1/NOAA-20 through JPSS-4/NOAA-23) to continue or improve on EOS-like data records
- The CrIS L1B team continues to support efforts relating to creating climate quality products from five CrIS sensors: two in orbit, one to be launched in November, one just completed ground testing, and one to undergo ground testing this upcoming year
- This climate quality radiance dataset enables all follow-on NASA Sounder science and product generation, including for example the atmospheric sounding products, trace gas products, various climate process and trending studies

The CrIS NASA L1B Project and Product

- Joint effort at University of Wisconsin Madison and University of Maryland Baltimore County
- PIs: Joe Taylor and Larrabee Strow
- Current Focus and Products:
 - CrIS L1B (Version 3)
 - CrIS/VIIRS IMG software and datasets (*Version 2*): provide a subset of Visible Infrared Imaging Radiometer Suite (VIIRS) products that are co-located to the CrIS footprint
 - Climate Hyperspectral Infrared Product (CHIRP) for the AIRS and CrIS sounders (*Version 1*). The CHIRP product converts the parent instrument's radiances to a common Spectral Response Function (SRF) and removes inter-satellite biases, providing a consistent inter-satellite radiance record
 - CrIS RTA

Product Generation and Distribution via Sounder SIPS, Atmosphere SIPS (IMG), and GES-DISC

The CrIS Sensors

- Compact, large aperture, athermalized design
- Fully wedged / tilted with excellent image quality
- Pupil imaging system
- PV MCT detectors
- 4-stage passive cooler

Multi-sensor Hyperspectral Infrared Climate Data Record

The trends from AIRS, IASI, and CrIS in overlapping time periods are very similar

Multi-sensor Hyperspectral Infrared Climate Data Record

The trends from AIRS, IASI, and CrIS in overlapping time periods are very similar

CrIS NASA L1B Timeline

Outline

- Introduction
- CrIS L1B
 - Unique attributes
 - Algorithm
 - Calibration parameters and traceability
 - Radiometric uncertainty
 - FSR and NSR product differences
- IMG
- CHIRP and RTA
- Summary

CrIS NASA L1B: Unique Attributes

- The CrIS NASA L1b processing and NOAA SDR (IDPS) processing are designed for two different applications
- The NOAA SDR product was designed to support operational weather forecasting
- The NASA L1B product priority is long term climate records:
 - homogeneous radiance product across multiple sensors, including inter-satellite calibration efforts with rigorous radiometric uncertainty estimates for all observations
 - "operational science" code: transparent and accessible code base produced by a small PI led team of engineers, scientists, and programmers in a high-level language that is easily understandable by current and future users
 - long-term monitoring and validation of the CrIS L1B data record and maintenance and refinement of the L1B software by the same algorithm and software development team
 - support reprocessing of the full mission datasets with a consistent calibration algorithm and optimal calibration coefficients and parameters (the mission datasets have been reprocessed several times already),
 - software and re-processing is under NASA control

CrIS NASA L1B: Unique Attributes

- The underlying calibration equation and theory for CrIS NASA L1b Version 3 processing and current IDPS (NOAA SDR) processing are similar but may diverge, as needed, for future releases
 - CrIS NASA L1B Version 3 includes correction of the Doppler shift due to the Earth's rotation. The CrIS NASA L1B Version 4 will include full Doppler correction (Earth rotation and satellite velocity). The NOAA SDR product does not include Doppler correction.
 - Ongoing efforts to assess and mitigate any remaining "spectral ringing" in the L1B product have been made and will continue, which simplifies the use of data across multiple CrIS sensors.

	NOAA SDR	NASA L1B
Granule size	31.997 sec	6 min
File type	HDF5	NetCDF4
Geolocation	in a separate file	included in the same file
Terrain-corrected Geo?	no	yes (corrected and uncorrected geo available)
Doppler correction?	no	yes
Includes data for RU tool?	no, but output from NASA RU tool is applicable	yes
Wavenumbers included?	no	yes
Missing data representation	multiple values in -999.x range	single value near data max or min (NetCDF4 fill value)

CrIS L1B Calibration Algorithm

- CrIS uses a physical calibration with clearly defined traceability and uncertainty assessment for all calibration parameters (*No nonphysical correction parameters*)
- Key components of the algorithm: FFT, nonlinearity correction, radiometric calibration, spectral calibration (including self-apodization correction), polarization correction
- Radiometric calibration: Complex calibration method (Revercomb, 1988)
 - A simple two-point calibration (Internal Calibration Target and Deep Space View) is applied to the Earth scene spectra after all spectra have been corrected for any nonlinear response
 - Efficiently accounts for differences in phase between instrument selfemission and input radiance (no need for a traditional phase correction)
- Full calibration is applied to **complex** spectra (producing real and imaginary components for the output)
 - Imaginary part of calibrated radiance is a powerful calibration diagnostic

CrIS L1B Calibration Algorithm

- Spectral calibration: an onboard neon source is used for spectral calibration, and instrument self-apodization correction via inverse self apodization operator (Genest and Tremblay, 1999; Desbiens et al., 2006).
 - Self-apodization is caused by the expected mixing of signals with a continuous range of OPD scales that arises from the range of field angles passing through the interferometer
 - This effect is defined very accurately by sensor geometry and can be rigorously corrected
 - The sensor geometry is determined in TVAC and confirmed and monitored for any changes on-orbit
 - Corrects all spectra in each 3x3 array (corner, side, and center FOVs) to look like they were collected on the central optic axis
 - CrIS spectral calibration and SA correction provide a consistent sampling and ILS across all CrIS sensors and FOVs
- NEdN Estimate: Full calibration (without Doppler or polarization correction) is used to produce an NEdN estimate for every granule.

Radiometric Calibration: Key Calibration Parameters and Traceability Traceability is critical for a climate data record

 Detector Nonlinearity: quadratic nonlinearity coefficient and DC Level Pre-launch Out-of-band harmonic analyses Pre-launch ECT views at six temperatures Post-launch Out-of-band harmonic analyses Post-launch FOV-to-FOV analyses 		
 ICT (Internal Calibration Target): ICT temperature and emissivity Pre-launch PRT calibrations Pre-launch emissivity characterization Pre-launch L_{ICT} verification using TVAC External Calibration Target (ECT) with T_{ECT} = T_{ICT} 		
 Polarization: combined scene mirror and sensor polarization and sensor polarization angle Optical design analyses and component level measurements Post-launch pitch maneuver data 		
External Calibration Target (ECT) view TVAC data used to characterize the sensor radiometric nonlinearity and provide end-to-end calibration traceability to NIST via temperature sensor calibrations and NIST TXR measurements		

Radiometric Uncertainty and the Radiometric Uncertainty Tool

- A critical aspect of a reference sensor and climate quality measurement record is the documentation of and ability to calculate the uncertainty in the sensor measurements
- The radiometric uncertainty (RU) in the calibrated radiance can be determined via a perturbation analysis of the calibration equation
 - Equivalent to a differential error analysis described in the GUM (Guide to Uncertainty in Measurements)
- SNPP CrIS: Tobin, D., et al. (2013), Suomi-NPP CrIS radiometric calibration uncertainty, J. Geophys. Res. Atmos., 118, 10,589–10,600, doi: 10.1002/jgrd.50809.
- The CrIS NASA L1B V3 product contains the information needed to accurately calculate the radiometric uncertainty for any CrIS NASA L1B calibrated radiance
- Radiometric Uncertainty Tool documentation, sample code, and static RU parameters are now available via the GES DISC L1b landing pages ('NASA Cross-track Infrared Sounder (CrIS) Level 1B Radiometric Uncertainty Description Document, v3')

Radiometric Uncertainty Tool

17

Radiometric Uncertainty Tool

2018-04-01, NOAA-20, Ascending (~12 hours of data)

270

260

250

230

210

log(count)

log(count)

log(count)

FSR and NSR

- The spectral resolution of SNPP CrIS was changed during the mission
- Initially the MW and SW bands were truncated onboard to 0.4 and 0.2 cm interferogram MOPD. This resulted in a product with spectral resolution of 0.625 cm⁻¹ in the LW band, and 1.25 cm⁻¹ MW band and 2.5 cm⁻¹ in the SW band (CrIS NSR)
- During the SNPP mission, the decision was made to downlink full resolution data in all three CrIS bands, supporting the production of a CrIS product with a spectral resolution of 0.625 cm⁻¹ in all bands (CrIS FSR)
- To support the two goals of providing the longest possible dataset and the highest resolution dataset, the SNPP CrIS L1B product is available at two spectral resolutions:
 - Normal Spectral Resolution (NSR), starting on April 19, 2012
 - Full Spectral Resolution (FSR), starting on November 2, 2015
- NOAA-20 has supported FSR product for the entire mission
- Current plan is to produce the NOAA-20 product only at FSR

FSR and NSR

- To ensure a consistent NSR product through the life of the mission, the first step in the NSR product is to truncate the interferograms to the start of mission interferogram lengths
- This results in small "spectral ringing" differences in the unapodized SNPP CrIS LW NSR and FSR products
- We are currently working on a ringing removal technique

Example FSR – NSR Difference (bottom panels)

SNPP Tropical Granule

SNPP Antarctic Granule

Space Science and Engineering Center University of Wisconsin-Madison

20

FSR and NSR

- To ensure a consistent NSR product through the life of the mission, the first step in the NSR product is to truncate the interferograms to the start of mission interferogram lengths
- This results in small "spectral ringing" differences in the unapodized SNPP CrIS LW NSR and FSR products

Example FSR – NSR Difference (bottom panels)

• We are currently working on a ringing removal technique

150 100 mW/(m2 sr cm⁻¹) 05 00 80 mW/(m2 sr cm⁻¹) 60 40 20 0 FSR - NSR 0.5 0.5 -0.06 -1000 1010 1020 1040 1050 1060 1080 mW/(m2 sr cm⁻¹) nW/(m2 sr cm⁻¹) C C -0.5 -0.5 750 650 700 800 850 900 950 1000 1050 650 700 750 800 850 900 950 1000 1050 wavenumber [cm⁻¹] wavenumber [cm⁻¹]

SNPP Tropical Granule

SNPP Antarctic Granule

Outline

- Introduction
- CrIS L1B
 - Unique attributes
 - Algorithm
 - Calibration parameters and traceability
 - Radiometric uncertainty
 - FSR and NSR product differences
- IMG
- CHIRP and RTA
- Summary

VIIRS / CrIS IMG Product

- A "value added" product, that provides VIIRS to CrIS footprint collocation information in small, easy to use files with common file granulation to the NASA VIIRS and CrIS L1b products
- Collocate CrIS FOVs with VIIRS Cloud Mask and Radiances/Reflectances
- For each CrIS and corresponding VIIRS L1B granule, CrIS/VIIRS collocation is performed, and the indices of VIIRS pixels within each CrIS footprint are written to an imager to sounder collocation file (IMG_COL, 12-15 MB per file)
- A corresponding IMG file is also produced, containing statistics of the VIIRS (MVCM) cloud mask and VIIRS radiances and reflectances that have been collocated within each CrIS footprint (IMG, ~6 MB per file)

Example M15 IMG data, showing VIIRS Clear Sky BTs for clear and partially cloudy CrIS footprints

VIIRS / CrIS IMG Product

- One-to-one relation to the {9 x 30 x 45} CrIS footprints in the L1b files
- Potential future work to create additional collocated fields or files, e.g.
 - VIIRS clouds heights, aerosols, etc
 - Surface temperature, re-analysis fields, carbon tracker, etc.
- Data processed at the Atmospheres and mission length products delivered to and available at GES-DISC
- Recent applications: Ammonia "non-detects" paper, Evans et al. submitted.

We are ready to expand the IMG product and apply it to AIRS/MODIS, but need the resources and support from NASA to move forward

Example M15 IMG data, showing VIIRS Clear Sky BTs for clear and partially cloudy CrIS footprints

VIIRS SRFs and CrIS Spectral Coverage

Single Day Of VIIRS – CrIS (Uniform Scenes)

Mission Length VIIRS – CrIS (SNPP)

Outline

- Introduction
- CrIS L1B
 - Unique attributes
 - Algorithm
 - Calibration parameters and traceability
 - Radiometric uncertainty
 - FSR and NSR product differences
- IMG
- CHIRP and RTA
- Summary

Climate Hyperspectral Infrared Product (CHIRP)

A New Approach for Climate Research

- Stay in radiance space "as long as possible"
 - Lowers uncertainty and effects of a-priori data
- Use appropriate sampling
 - Climate analysis can often be done with far lower sampling (avoid clouds for ex.)
- Time/space averaging can drastically lower compute and storage requirements
- "Retrievals" not always needed
 - Cloud trends
 - Events (fires, volcanic eruptions, extrema, dust)
- Requires homogeneous radiance record: "CHIRP". Same spectral and radiometric responses for AIRS and CrIS
- Atmospheric profile retrievals use radiance anomalies as input. With CHIRP this can cross instrument boundaries

Climate Hyperspectral Infrared Product (CHIRP)

CHIRP in the Cloud

- Save data into 64 x 72 = 4608 "Tiles". Each Tile is a series of "files" containing 16days worth of data
- Allows (on an HPC filesystem) one to read in full mission, all scenes, in a single Tile in < 10 minutes
- Working to produce this product in the GES DISC cloud using zarr format for highspeed but simple cloud access to the scientific community
- ESDIS is just not oriented towards (a) "point" data like Level 1+2, and (b) has no concept of scientists doing data analysis in the cloud using their "normal" working environment (the unix/linux prompt)
- These problems should be easy to solve, but ESDIS is oriented to users of images and Level 3 data, not really what is needed in sounder science. We are presently "stuck"

CrIS/CHIRP RTAs

- We continue to produce CrIS-NSR and CrIS-FSR RTAs that use same software as AIRS RTA
- Compatibility with AIRS RTA is extremely important for CLIMCAPS Level 2 algorithms
- Recent versions use the HITRAN 2020 line parameter database and improved continuum models (esp. in the 2400 cm⁻¹ sounding region).

Outline

- Introduction
- CrIS L1B
 - Unique attributes
 - Algorithm
 - Calibration parameters and traceability
 - Radiometric uncertainty
 - FSR and NSR product differences
- IMG
- CHIRP
- Summary

Summary

- The CrIS sensors are producing extremely high-quality calibrated radiance data records and will extend the record through 2040 and potentially beyond
- The CrIS L1B team continues to support efforts relating to creating climate quality products from five CrIS sensors: two in orbit, one to be launched in November, one just completed ground testing, and one to undergo ground testing this upcoming year
- The CrIS NASA L1B project is responsible for providing the CrIS NASA L1B, IMG, CHIRP, and RTA products, and we are here to help investigators understand and use the data
- This climate quality radiance dataset enables all follow-on NASA Sounder science and product generation, including atmospheric sounding products, trace gas products, and various climate process and trending studies
- NASA support is critical for production of this multi-sensor climate quality radiance dataset and continuation of NASA Sounder Science activities through the JPSS series

Product contact info:

- CrIS L1B Team: <u>cris.l1b.support@ssec.wisc.edu</u>
- Sounder SIPS: <u>sounder.sips@jpl.nasa.gov</u>

The L1B Version 3 Test Report is available at the L1B Product Landing Pages

Current Products

CrIS L1B V3 products:

S-NPP CrIS L1b NSR v3, SNPPCrISL1BNSR: <u>https://doi.org/10.5067/OZZPDWENP2NC</u> S-NPP CrIS L1b FSR v3, SNPPCrISL1B: <u>https://doi.org/10.5067/ZCRSHBM5HB23</u> JPSS-1 CrIS L1b FSR v3, SNDRJ1CrISL1B: <u>https://doi.org/10.5067/LVEKYTNSRNKP</u>

IMG and IMG_COL v2 products:

S-NPP CrIS IMG, SNDRSNCrISL1BIMG: <u>https://doi.org/10.5067/NC505NHFIHCY</u> JPSS-1 CrIS IMG, SNDRJ1CrISL1BIMG: <u>https://doi.org/10.5067/A7SVIO2AAD0E</u> S-NPP CrIS IMG_COL, SNDRSNCrISL1BIMGC: <u>https://doi.org/10.5067/8ABZCV1TKE8D</u> JPSS-1 CrIS IMG_COL, SNDRJ1CrISL1BIMGC: <u>https://doi.org/10.5067/51CRDMSIA1YJ</u>

CHIRP v1 products:

Inter-instrument product, SNDR13CHRP1: <u>https://doi.org/10.5067/WIG2N5C20MRJ</u> AIRS only, SNDR13CHRP1AQCal: <u>https://doi.org/10.5067/G1DTUEAV5I18</u> S-NPP CrIS only, SNDR13CHRP1SNCal: <u>https://doi.org/10.5067/BS76XFNJVRXL</u> JPSS-1 CrIS only, SNDR13CHRP1J1Cal: <u>https://doi.org/10.5067/MK6ED0BPUBKJ</u>

Acknowledgements

<u>UW-SSEC L1B Team and Contributors</u>: Joe Taylor, Hank Revercomb, David Tobin, Graeme Martin, Jessica Braun, Dan DeSlover, Ray Garcia, Robert Knuteson, Michelle Loveless, Greg Quinn, Will Roberts

> <u>UMBC L1B Team</u>: Larrabee Strow, Howard Motteler, Steven Buczkowski, Sergio DeSouza-Machado, Chris Hepplewhite

> > Jim Gleason, NASA HQ

The NOAA CrIS Cal Val Team, led by Flavio Iturbide

Dave Johnson, NASA LaRC

Sounder-SIPS and Atmosphere-SIPS Teams

GES-DISC

The NASA Sounder Science Leads: Vivienne Payne, Larrabee Strow, Joao Teixeira

The NASA Sounder Science Team

Extra Material

NOAA Flyout Chart (As of May 2022)

NOAA Polar Satellite Programs Continuity of Weather Observations

Key Features of a Climate Data Record

Climate Data Record (CDR)

"A time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change" (US National Research Council, 2004)

- **"Continuity"** of an Earth measurement exists when the **quality** of the measurement for a specific quantified Earth science objective is maintained over the required temporal and spatial domain set by the objective.
- "Quality" is characterized by the combined standard uncertainty, which includes instrument salibration uncertainty, repeatability, time and space sampling, and data systems and delivery for climate variables (algorithms, reprocessing, and availability).
- **"Consistency"** requires that instruments introduced to continue an existing CDR produce "backward compatible" measurements that allow continuation of the CDR without introducing discontinuities in the record.
- Since there is no "truth" available, ensuring that a data record satisfies the CDR criteria is challenging: multiple independent intercomparisons involving both satellite and surface/insitu measurements are needed.

"Earth Radiation Balance", Norm Loeb, NASA LaRC; Climate and Radiation Monitoring - Mini-symposium, JPL Center for Climate Sciences

National Research Council. 2004. *Climate Data Records from Environmental Satellites: Interim Report*. Washington, DC: The National Academies Press. https://doi.org/10.17226/10944. 38